/*
* Copyright (C) 2012 Thorsten Liebig (Thorsten.Liebig@gmx.de)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
#include "operator_ext_conductingsheet.h"
#include "tools/array_ops.h"
#include "tools/constants.h"
#include "cond_sheet_parameter.h"
Operator_Ext_ConductingSheet::Operator_Ext_ConductingSheet(Operator* op, double f_max) : Operator_Ext_LorentzMaterial(op)
{
m_f_max = f_max;
}
Operator_Ext_ConductingSheet::Operator_Ext_ConductingSheet(Operator* op, Operator_Ext_ConductingSheet* op_ext) : Operator_Ext_LorentzMaterial(op, op_ext)
{
m_f_max = op_ext->m_f_max;
}
Operator_Extension* Operator_Ext_ConductingSheet::Clone(Operator* op)
{
if (dynamic_cast(this)==NULL)
return NULL;
return new Operator_Ext_ConductingSheet(op, this);
}
bool Operator_Ext_ConductingSheet::BuildExtension()
{
double dT = m_Op->GetTimestep();
unsigned int pos[] = {0,0,0};
double coord[3];
unsigned int numLines[3] = {m_Op->GetOriginalNumLines(0),m_Op->GetOriginalNumLines(1),m_Op->GetOriginalNumLines(2)};
m_Order = 0;
vector v_pos[3];
int ****tanDir = Create_N_3DArray(numLines);
float ****Conductivity = Create_N_3DArray(numLines);
float ****Thickness = Create_N_3DArray(numLines);
CSPrimitives* cs_sheet = NULL;
double box[6];
int nP, nPP;
bool b_pos_on;
bool disable_pos;
for (pos[0]=0; pos[0]GetBCSize(2*m))) || (pos[m]>=(numLines[m]-m_Op->GetBCSize(2*m+1)-1)))
disable_pos = true;
for (int n=0; n<3; ++n)
{
nP = (n+1)%3;
nPP = (n+2)%3;
tanDir[n][pos[0]][pos[1]][pos[2]] = -1; //deactivate by default
Conductivity[n][pos[0]][pos[1]][pos[2]] = 0; //deactivate by default
Thickness[n][pos[0]][pos[1]][pos[2]] = 0; //deactivate by default
if (m_Op->GetYeeCoords(n,pos,coord,false)==false)
continue;
// Ez at r==0 not supported --> set to PEC
if (m_CC_R0_included && (n==2) && (pos[0]==0))
disable_pos = true;
CSProperties* prop = m_Op->GetGeometryCSX()->GetPropertyByCoordPriority(coord,(CSProperties::PropertyType)(CSProperties::METAL | CSProperties::MATERIAL), false, &cs_sheet);
CSPropConductingSheet* cs_prop = dynamic_cast(prop);
if (cs_prop)
{
if (cs_sheet==NULL)
return false; //sanity check, this should never happen
if (cs_sheet->GetDimension()!=2)
{
cerr << "Operator_Ext_ConductingSheet::BuildExtension: A conducting sheet primitive (ID: " << cs_sheet->GetID() << ") with dimension: " << cs_sheet->GetDimension() << " found, fallback to PEC!" << endl;
m_Op->SetVV(n,pos[0],pos[1],pos[2], 0 );
m_Op->SetVI(n,pos[0],pos[1],pos[2], 0 );
++m_Op->m_Nr_PEC[n];
continue;
}
cs_sheet->SetPrimitiveUsed(true);
if (disable_pos)
{
m_Op->SetVV(n,pos[0],pos[1],pos[2], 0 );
m_Op->SetVI(n,pos[0],pos[1],pos[2], 0 );
++m_Op->m_Nr_PEC[n];
continue;
}
Conductivity[n][pos[0]][pos[1]][pos[2]] = cs_prop->GetConductivity();
Thickness[n][pos[0]][pos[1]][pos[2]] = cs_prop->GetThickness();
if ((Conductivity[n][pos[0]][pos[1]][pos[2]]<=0) || (Thickness[n][pos[0]][pos[1]][pos[2]]<=0))
{
cerr << "Operator_Ext_ConductingSheet::BuildExtension: Warning: Zero conductivity or thickness detected... fallback to PEC!" << endl;
m_Op->SetVV(n,pos[0],pos[1],pos[2], 0 );
m_Op->SetVI(n,pos[0],pos[1],pos[2], 0 );
++m_Op->m_Nr_PEC[n];
continue;
}
cs_sheet->GetBoundBox(box);
if (box[2*nP]!=box[2*nP+1])
tanDir[n][pos[0]][pos[1]][pos[2]] = nP;
if (box[2*nPP]!=box[2*nPP+1])
tanDir[n][pos[0]][pos[1]][pos[2]] = nPP;
b_pos_on = true;
}
}
if (b_pos_on)
{
for (int n=0; n<3; ++n)
v_pos[n].push_back(pos[n]);
}
}
}
}
size_t numCS = v_pos[0].size();
if (numCS==0)
return false;
m_LM_Count.push_back(numCS);
m_LM_Count.push_back(numCS);
m_Order = 2;
m_volt_ADE_On = new bool[m_Order];
m_volt_ADE_On[0] = m_volt_ADE_On[1]=true;
m_curr_ADE_On = new bool[m_Order];
m_curr_ADE_On[0] = m_curr_ADE_On[1]=false;
m_LM_pos = new unsigned int**[m_Order];
m_LM_pos[0] = new unsigned int*[3];
m_LM_pos[1] = new unsigned int*[3];
v_int_ADE = new FDTD_FLOAT**[m_Order];
v_ext_ADE = new FDTD_FLOAT**[m_Order];
i_int_ADE = NULL;
i_ext_ADE = NULL;
v_int_ADE[0] = new FDTD_FLOAT*[3];
v_ext_ADE[0] = new FDTD_FLOAT*[3];
v_int_ADE[1] = new FDTD_FLOAT*[3];
v_ext_ADE[1] = new FDTD_FLOAT*[3];
for (int n=0; n<3; ++n)
{
m_LM_pos[0][n] = new unsigned int[numCS];
m_LM_pos[1][n] = new unsigned int[numCS];
for (unsigned int i=0; iMainOp->SetPos(pos[0],pos[1],pos[2]);
for (int n=0;n<3;++n)
{
tpos[0]=pos[0];tpos[1]=pos[1];tpos[2]=pos[2];
t_dir = tanDir[n][pos[0]][pos[1]][pos[2]];
G0 = Conductivity[n][pos[0]][pos[1]][pos[2]]*Thickness[n][pos[0]][pos[1]][pos[2]];
w0 = 8.0/ G0 / Thickness[n][pos[0]][pos[1]][pos[2]]/__MUE0__;
Omega_max = w_stop/w0;
for (optParaPos=0;optParaPosOmega_max)
break;
if (optParaPos>=numOptPara)
{
cerr << "Operator_Ext_ConductingSheet::BuildExtension(): Error, conductor thickness, conductivity or max. simulation frequency of interest is too high! Check parameter!" << endl;
cerr << " --> max f: " << m_f_max << "Hz, Conductivity: " << Conductivity[n][pos[0]][pos[1]][pos[2]] << "S/m, Thickness " << Thickness[n][pos[0]][pos[1]][pos[2]]*1e6 << "um" << endl;
optParaPos = numOptPara-1;
}
v_int_ADE[0][n][i]=0;
v_ext_ADE[0][n][i]=0;
v_int_ADE[1][n][i]=0;
v_ext_ADE[1][n][i]=0;
if (t_dir>=0)
{
wtl = m_Op->GetEdgeLength(n,pos)/m_Op->GetNodeWidth(t_dir,pos);
factor = 1;
if (tanDir[t_dir][tpos[0]][tpos[1]][tpos[2]]<0)
factor = 2;
--tpos[t_dir];
if (tanDir[t_dir][tpos[0]][tpos[1]][tpos[2]]<0)
factor = 2;
L1 = l1[optParaPos]/G0/w0*factor;
L2 = l2[optParaPos]/G0/w0*factor;
R1 = r1[optParaPos]/G0*factor;
R2 = r2[optParaPos]/G0*factor;
G = G0*g[optParaPos]/factor;
L1*=wtl;
L2*=wtl;
R1*=wtl;
R2*=wtl;
G/=wtl;
Lmin = L1;
if (L2EC_G[n][index]= G;
m_Op->EC_C[n][index]= dT*dT/4.0*(16.0/Lmin + 1/L1 + 1/L2);
m_Op->Calc_ECOperatorPos(n,pos);
v_int_ADE[0][n][i]=(2.0*L1-dT*R1)/(2.0*L1+dT*R1);
v_ext_ADE[0][n][i]=dT/(L1+dT*R1/2.0)*m_Op->GetVI(n,pos[0],pos[1],pos[2]);
v_int_ADE[1][n][i]=(2.0*L2-dT*R2)/(2.0*L2+dT*R2);
v_ext_ADE[1][n][i]=dT/(L2+dT*R2/2.0)*m_Op->GetVI(n,pos[0],pos[1],pos[2]);
}
}
}
return true;
}