close all clear clc %% setup the simulation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% length = 2000; unit = 1e-3; a = 1000; width = a; b = 500; height = b; mesh_res = [10 10 10]; %define mode m = 1; n = 0; EPS0 = 8.85418781762e-12; MUE0 = 1.256637062e-6; C0 = 1/sqrt(EPS0*MUE0); Z0 = sqrt(MUE0/EPS0); f0 = 1e9; freq = linspace(f0-f0/3,f0+f0/3,201); k = 2*pi*freq/C0; kc = sqrt((m*pi/a/unit)^2 + (n*pi/b/unit)^2); fc = C0*kc/2/pi; beta = sqrt(k.^2 - kc^2); ZL_a = k * Z0 ./ beta; %% mode functions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% func_Ex = [num2str( n/b/unit) '*cos(' num2str(m*pi/a) '*x)*sin(' num2str(n*pi/b) '*y)']; func_Ey = [num2str(-m/a/unit) '*sin(' num2str(m*pi/a) '*x)*cos(' num2str(n*pi/b) '*y)']; func_Hx = [num2str(m/a/unit) '*sin(' num2str(m*pi/a) '*x)*cos(' num2str(n*pi/b) '*y)']; func_Hy = [num2str(n/b/unit) '*cos(' num2str(m*pi/a) '*x)*sin(' num2str(n*pi/b) '*y)']; %% define and openEMS options %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% openEMS_opts = ''; % openEMS_opts = [openEMS_opts ' --disable-dumps']; % openEMS_opts = [openEMS_opts ' --debug-material']; openEMS_opts = [openEMS_opts ' --engine=fastest']; Settings = []; Settings.LogFile = 'openEMS.log'; Sim_Path = 'tmp'; Sim_CSX = 'rect_wg.xml'; if (exist(Sim_Path,'dir')) rmdir(Sim_Path,'s'); end mkdir(Sim_Path); %% setup FDTD parameter & excitation function %%%%%%%%%%%%%%%%%%%%%%%%%%%%% FDTD = InitFDTD(50000,1e-5,'OverSampling',6); FDTD = SetGaussExcite(FDTD,f0,f0/3); BC = [0 0 0 0 0 3]; FDTD = SetBoundaryCond(FDTD,BC); %% setup CSXCAD geometry & mesh %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% CSX = InitCSX(); mesh.x = 0 : mesh_res(1) : width; mesh.y = 0 : mesh_res(2) : height; mesh.z = 0 : mesh_res(3) : length; CSX = DefineRectGrid(CSX, unit,mesh); %% apply the excitation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% start=[0 0 mesh.z(1) ]; stop =[width height mesh.z(1) ]; CSX = AddExcitation(CSX,'excite',0,[1 1 0]); weight{1} = func_Ex; weight{2} = func_Ey; weight{3} = 0; CSX = SetExcitationWeight(CSX,'excite',weight); CSX = AddBox(CSX,'excite',0 ,start,stop); %% voltage and current definitions using the mode matching probes %%%%%%%%% start = [mesh.x(1) mesh.y(1) mesh.z(15)]; stop = [mesh.x(end) mesh.y(end) mesh.z(15)]; CSX = AddProbe(CSX, 'ut1', 10, 1, [], 'ModeFunction',{func_Ex,func_Ey,0}); CSX = AddBox(CSX, 'ut1', 0 ,start,stop); CSX = AddProbe(CSX,'it1', 11, 1, [], 'ModeFunction',{func_Hx,func_Hy,0}); CSX = AddBox(CSX,'it1', 0 ,start,stop); start = [mesh.x(1) mesh.y(1) mesh.z(end-15)]; stop = [mesh.x(end) mesh.y(end) mesh.z(end-15)]; CSX = AddProbe(CSX, 'ut2', 10, 1, [], 'ModeFunction',{func_Ex,func_Ey,0}); CSX = AddBox(CSX, 'ut2', 0 ,start,stop); CSX = AddProbe(CSX,'it2', 11, 1, [], 'ModeFunction',{func_Hx,func_Hy,0}); CSX = AddBox(CSX,'it2', 0 ,start,stop); %% define dump boxes... %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% CSX = AddDump(CSX,'Et','FileType',1,'SubSampling','4,4,2'); start = [mesh.x(1) , height/2 , mesh.z(1)]; stop = [mesh.x(end) , height/2 , mesh.z(end)]; CSX = AddBox(CSX,'Et',0 , start,stop); CSX = AddDump(CSX,'Ht','DumpType',1,'FileType',1,'SubSampling','4,4,2'); CSX = AddBox(CSX,'Ht',0,start,stop); %% Write openEMS compatoble xml-file %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% WriteOpenEMS([Sim_Path '/' Sim_CSX],FDTD,CSX); RunOpenEMS(Sim_Path, Sim_CSX, openEMS_opts, Settings) %% postproc %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% U = ReadUI({'ut1','ut2'},[Sim_Path '/'],freq); I = ReadUI({'it1','it2'},[Sim_Path '/'],freq); Exc = ReadUI('et',Sim_Path,freq); uf1 = U.FD{1}.val./Exc.FD{1}.val; uf2 = U.FD{2}.val./Exc.FD{1}.val; if1 = I.FD{1}.val./Exc.FD{1}.val; if2 = I.FD{2}.val./Exc.FD{1}.val; uf1_inc = 0.5 * ( uf1 + if1 .* ZL_a ); if1_inc = 0.5 * ( if1 + uf1 ./ ZL_a ); uf2_inc = 0.5 * ( uf2 + if2 .* ZL_a ); if2_inc = 0.5 * ( if2 + uf2 ./ ZL_a ); uf1_ref = uf1 - uf1_inc; if1_ref = if1 - if1_inc; uf2_ref = uf2 - uf2_inc; if2_ref = if2 - if2_inc; %% plot s-parameter figure s11 = uf1_ref./uf1_inc; s21 = uf2_inc./uf1_inc; plot(freq,20*log10(abs(s11)),'Linewidth',2); xlim([freq(1) freq(end)]); % ylim([-40 5]); grid on; hold on; plot(freq,20*log10(abs(s21)),'r','Linewidth',2); legend('s11','s21','Location','SouthEast'); ylabel('s-para (dB)'); xlabel('freq (Hz)'); %% compare analytic and numerical wave-impedance ZL = uf1./if1; figure() plot(freq,real(ZL),'Linewidth',2); hold on; grid on; plot(freq,imag(ZL),'r--','Linewidth',2); plot(freq,ZL_a,'g-.','Linewidth',2); ylabel('ZL (\Omega)'); xlabel('freq (Hz)'); xlim([freq(1) freq(end)]); legend('\Re(Z_L)','\Im(Z_L)','Z_L analytic','Location','Best');