close all clear clc EPS0 = 8.85418781762e-12; MUE0 = 1.256637062e-6; C0 = 1/sqrt(EPS0*MUE0); Z0 = sqrt(MUE0/EPS0); f0 = 0.5e9; epsR = 3.6; abs_length = 250; length = 6000; port_dist = 1500; rad_i = 100; rad_a = 230; partial = 0.25; max_mesh = 10; max_alpha = max_mesh; N_alpha = ceil(rad_a * 2*pi * partial / max_alpha); mesh_res = [max_mesh 2*pi*partial/N_alpha max_mesh]; openEMS_opts = ''; openEMS_opts = [openEMS_opts ' --disable-dumps']; % openEMS_opts = [openEMS_opts ' --debug-material']; Sim_Path = 'tmp'; Sim_CSX = 'coax.xml'; mkdir(Sim_Path); %setup FDTD parameter FDTD = InitCylindricalFDTD(1e5,1e-5); FDTD = SetGaussExcite(FDTD,f0,f0); BC = [0 0 1 1 0 0]; FDTD = SetBoundaryCond(FDTD,BC); %setup CSXCAD geometry CSX = InitCSX(); mesh.x = rad_i : mesh_res(1) : rad_a; mesh.y = -pi*partial-mesh_res(2)/2 : mesh_res(2) : pi*partial+mesh_res(2)/2; mesh.z = 0 : mesh_res(3) : length; CSX = DefineRectGrid(CSX, 1e-3,mesh); %%%fake pml finalKappa = 0.3/abs_length^4; finalSigma = finalKappa*MUE0/EPS0/epsR; CSX = AddMaterial(CSX,'pml'); CSX = SetMaterialProperty(CSX,'pml','Kappa',finalKappa,'Epsilon',epsR); CSX = SetMaterialProperty(CSX,'pml','Sigma',finalSigma); CSX = SetMaterialWeight(CSX,'pml','Kappa',['pow(abs(z)-' num2str(length-abs_length) ',4)']); CSX = SetMaterialWeight(CSX,'pml','Sigma',['pow(abs(z)-' num2str(length-abs_length) ',4)']); start = [rad_i mesh.y(1) length-abs_length]; stop = [rad_a mesh.y(end) length]; CSX = AddBox(CSX,'pml',0 ,start,stop); CSX = AddMaterial(CSX,'fill'); CSX = SetMaterialProperty(CSX,'fill','Epsilon',epsR); start = [mesh.x(1) mesh.y(1) 0]; stop = [mesh.x(end) mesh.y(end) length]; CSX = AddBox(CSX,'fill',0 ,start,stop); start = [rad_i mesh.y(1) 0]; stop = [rad_a mesh.y(end) 0]; CSX = AddExcitation(CSX,'excite',0,[1 0 0]); weight{1} = '1/rho'; weight{2} = 0; weight{3} = 0; CSX = SetExcitationWeight(CSX, 'excite', weight ); CSX = AddBox(CSX,'excite',0 ,start,stop); %dump CSX = AddDump(CSX,'Et_','DumpMode',2); start = [mesh.x(1) , 0 , mesh.z(1)]; stop = [mesh.x(end) , 0 , mesh.z(end)]; CSX = AddBox(CSX,'Et_',0 , start,stop); CSX = AddDump(CSX,'Ht_','DumpType',1,'DumpMode',2); CSX = AddBox(CSX,'Ht_',0,start,stop); % voltage calc (take a voltage average to be at the same spot as the % current calculation) CSX = AddProbe(CSX,'ut1_1',0); start = [ rad_i 0 port_dist ];stop = [ rad_a 0 port_dist ]; CSX = AddBox(CSX,'ut1_1', 0 ,start,stop); CSX = AddProbe(CSX,'ut1_2',0); start = [ rad_i 0 port_dist+mesh_res(3) ];stop = [ rad_a 0 port_dist+mesh_res(3) ]; CSX = AddBox(CSX,'ut1_2', 0 ,start,stop); % current calc CSX = AddProbe(CSX,'it1',1); mid = 0.5*(rad_i+rad_a); start = [ 0 mesh.y(1) port_dist ];stop = [ mid mesh.y(end) port_dist ]; CSX = AddBox(CSX,'it1', 0 ,start,stop); %Write openEMS compatoble xml-file WriteOpenEMS([Sim_Path '/' Sim_CSX],FDTD,CSX); %cd to working dir and run openEMS savePath = pwd(); cd(Sim_Path); %cd to working dir args = [Sim_CSX ' ' openEMS_opts]; invoke_openEMS(args) cd(savePath); UI = ReadUI({'ut1_1','ut1_2','it1'},'tmp/'); u_f = (UI.FD{1}.val + UI.FD{2}.val)/2; %averaging voltages to fit current i_f = UI.FD{3}.val / partial; delta_t = UI.TD{3}.t(1) - UI.TD{1}.t(1); % half time-step (s) i_f2 = i_f .* exp(-1i*2*pi*UI.FD{1}.f*delta_t); % compensate half time-step advance of H-field ZL = Z0/2/pi/sqrt(epsR)*log(rad_a/rad_i); %analytic line-impedance of a coax plot(UI.FD{1}.f,ZL*ones(size(u_f)),'g'); hold on; grid on; Z = u_f./i_f2; plot(UI.FD{1}.f,real(Z),'Linewidth',2); plot(UI.FD{1}.f,imag(Z),'r','Linewidth',2); xlim([0 2*f0]); legend('Z_L','\Re\{Z\}','\Im\{Z\}','Location','Best');