/* * Copyright (C) 2010 Thorsten Liebig (Thorsten.Liebig@gmx.de) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "engine.h" #include "engine_extension.h" #include "operator_extension.h" #include "tools/array_ops.h" //! \brief construct an Engine instance //! it's the responsibility of the caller to free the returned pointer Engine* Engine::New(const Operator* op) { cout << "Create FDTD engine" << endl; Engine* e = new Engine(op); e->Init(); return e; } Engine::Engine(const Operator* op) { m_type = BASIC; numTS = 0; Op = op; for (int n=0;n<3;++n) numLines[n] = Op->GetOriginalNumLines(n); volt=NULL; curr=NULL; } Engine::~Engine() { this->Reset(); } void Engine::Init() { Reset(); numTS = 0; volt = Create_N_3DArray(numLines); curr = Create_N_3DArray(numLines); file_et.open( "et" ); file_ht.open( "ht" ); InitExtensions(); } void Engine::InitExtensions() { for (size_t n=0;nGetNumberOfExtentions();++n) { Operator_Extension* op_ext = Op->GetExtension(n); Engine_Extension* eng_ext = op_ext->CreateEngineExtention(); if (eng_ext) { eng_ext->SetEngine(this); m_Eng_exts.push_back(eng_ext); } } } void Engine::Reset() { Delete_N_3DArray(volt,numLines); volt=NULL; Delete_N_3DArray(curr,numLines); curr=NULL; file_et.close(); file_ht.close(); for (size_t n=0;nvv[0][pos[0]][pos[1]][pos[2]]; volt[0][pos[0]][pos[1]][pos[2]] += Op->vi[0][pos[0]][pos[1]][pos[2]] * ( curr[2][pos[0]][pos[1]][pos[2]] - curr[2][pos[0]][pos[1]-shift[1]][pos[2]] - curr[1][pos[0]][pos[1]][pos[2]] + curr[1][pos[0]][pos[1]][pos[2]-shift[2]]); //for y volt[1][pos[0]][pos[1]][pos[2]] *= Op->vv[1][pos[0]][pos[1]][pos[2]]; volt[1][pos[0]][pos[1]][pos[2]] += Op->vi[1][pos[0]][pos[1]][pos[2]] * ( curr[0][pos[0]][pos[1]][pos[2]] - curr[0][pos[0]][pos[1]][pos[2]-shift[2]] - curr[2][pos[0]][pos[1]][pos[2]] + curr[2][pos[0]-shift[0]][pos[1]][pos[2]]); //for z volt[2][pos[0]][pos[1]][pos[2]] *= Op->vv[2][pos[0]][pos[1]][pos[2]]; volt[2][pos[0]][pos[1]][pos[2]] += Op->vi[2][pos[0]][pos[1]][pos[2]] * ( curr[1][pos[0]][pos[1]][pos[2]] - curr[1][pos[0]-shift[0]][pos[1]][pos[2]] - curr[0][pos[0]][pos[1]][pos[2]] + curr[0][pos[0]][pos[1]-shift[1]][pos[2]]); } } ++pos[0]; } } void Engine::ApplyVoltageExcite() { int exc_pos; unsigned int ny; unsigned int pos[3]; //soft voltage excitation here (E-field excite) for (unsigned int n=0;nExc->Volt_Count;++n) { exc_pos = (int)numTS - (int)Op->Exc->Volt_delay[n]; exc_pos *= (exc_pos>0 && exc_pos<=(int)Op->Exc->Length); // if (n==0) cerr << numTS << " => " << Op->ExciteSignal[exc_pos] << endl; ny = Op->Exc->Volt_dir[n]; pos[0]=Op->Exc->Volt_index[0][n]; pos[1]=Op->Exc->Volt_index[1][n]; pos[2]=Op->Exc->Volt_index[2][n]; SetVolt(ny,pos, GetVolt(ny,pos) + Op->Exc->Volt_amp[n]*Op->Exc->Signal_volt[exc_pos]); } // write the first excitation into the file "et" if (numTS < Op->Exc->Length) file_et << numTS * Op->GetTimestep() << "\t" << Op->Exc->Signal_volt[numTS] << "\n"; // do not use std::endl here, because it will do an implicit flush else file_et << numTS * Op->GetTimestep() << "\t0" << "\n"; // do not use std::endl here, because it will do an implicit flush } void Engine::UpdateCurrents(unsigned int startX, unsigned int numX) { unsigned int pos[3]; pos[0] = startX; for (unsigned int posX=0;posXii[0][pos[0]][pos[1]][pos[2]]; curr[0][pos[0]][pos[1]][pos[2]] += Op->iv[0][pos[0]][pos[1]][pos[2]] * ( volt[2][pos[0]][pos[1]][pos[2]] - volt[2][pos[0]][pos[1]+1][pos[2]] - volt[1][pos[0]][pos[1]][pos[2]] + volt[1][pos[0]][pos[1]][pos[2]+1]); //for y curr[1][pos[0]][pos[1]][pos[2]] *= Op->ii[1][pos[0]][pos[1]][pos[2]]; curr[1][pos[0]][pos[1]][pos[2]] += Op->iv[1][pos[0]][pos[1]][pos[2]] * ( volt[0][pos[0]][pos[1]][pos[2]] - volt[0][pos[0]][pos[1]][pos[2]+1] - volt[2][pos[0]][pos[1]][pos[2]] + volt[2][pos[0]+1][pos[1]][pos[2]]); //for z curr[2][pos[0]][pos[1]][pos[2]] *= Op->ii[2][pos[0]][pos[1]][pos[2]]; curr[2][pos[0]][pos[1]][pos[2]] += Op->iv[2][pos[0]][pos[1]][pos[2]] * ( volt[1][pos[0]][pos[1]][pos[2]] - volt[1][pos[0]+1][pos[1]][pos[2]] - volt[0][pos[0]][pos[1]][pos[2]] + volt[0][pos[0]][pos[1]+1][pos[2]]); } } ++pos[0]; } } void Engine::ApplyCurrentExcite() { int exc_pos; unsigned int ny; unsigned int pos[3]; //soft current excitation here (H-field excite) for (unsigned int n=0;nExc->Curr_Count;++n) { exc_pos = (int)numTS - (int)Op->Exc->Curr_delay[n]; exc_pos *= (exc_pos>0 && exc_pos<=(int)Op->Exc->Length); // if (n==0) cerr << numTS << " => " << Op->ExciteSignal[exc_pos] << endl; ny = Op->Exc->Curr_dir[n]; pos[0]=Op->Exc->Curr_index[0][n]; pos[1]=Op->Exc->Curr_index[1][n]; pos[2]=Op->Exc->Curr_index[2][n]; SetCurr(ny,pos, GetCurr(ny,pos) + Op->Exc->Curr_amp[n]*Op->Exc->Signal_curr[exc_pos]); } // write the first excitation into the file "ht" if (numTS < Op->Exc->Length) file_ht << (numTS+0.5) * Op->GetTimestep() << "\t" << Op->Exc->Signal_curr[numTS] << "\n"; // do not use std::endl here, because it will do an implicit flush else file_ht << (numTS+0.5) * Op->GetTimestep() << "\t0" << "\n"; // do not use std::endl here, because it will do an implicit flush } bool Engine::IterateTS(unsigned int iterTS) { for (unsigned int iter=0;iterDoPreVoltageUpdates(); UpdateVoltages(0,numLines[0]); for (size_t n=0;nDoPostVoltageUpdates(); for (size_t n=0;nApply2Voltages(); ApplyVoltageExcite(); //current updates with extensions for (size_t n=0;nDoPreCurrentUpdates(); UpdateCurrents(0,numLines[0]-1); for (size_t n=0;nDoPostCurrentUpdates(); for (size_t n=0;nApply2Current(); ApplyCurrentExcite(); ++numTS; } return true; }