/* * Copyright (C) 2010 Thorsten Liebig (Thorsten.Liebig@gmx.de) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "engine.h" #include "Common/processfields.h" #include "operator_cylinder.h" #include "extensions/operator_extension.h" #include "extensions/operator_ext_cylinder.h" Operator_Cylinder* Operator_Cylinder::New(unsigned int numThreads) { cout << "Create cylindrical FDTD operator" << endl; Operator_Cylinder* op = new Operator_Cylinder(); op->setNumThreads(numThreads); op->Init(); return op; } Operator_Cylinder::Operator_Cylinder() : Operator_Multithread() { m_MeshType = ProcessFields::CYLINDRICAL_MESH; } Operator_Cylinder::~Operator_Cylinder() { Operator_Multithread::Reset(); } void Operator_Cylinder::Init() { CC_closedAlpha = false; CC_R0_included = false; Operator_Multithread::Init(); } void Operator_Cylinder::Reset() { Operator_Multithread::Reset(); } void Operator_Cylinder::InitOperator() { Operator_Multithread::InitOperator(); } int Operator_Cylinder::CalcECOperator( DebugFlags debugFlags ) { // debugs only work with the native vector dumps bool natDump = g_settings.NativeFieldDumps(); g_settings.SetNativeFieldDumps(true); int rc = Operator_Multithread::CalcECOperator(debugFlags); // reset original settings g_settings.SetNativeFieldDumps(natDump); return rc; } inline unsigned int Operator_Cylinder::GetNumberOfLines(int ny) const { //this is necessary for a correct field processing... cylindrical engine has to reset this by adding +1 if (CC_closedAlpha && ny==1) return numLines[1]-1; return numLines[ny]; } string Operator_Cylinder::GetDirName(int ny) const { if (ny==0) return "rho"; if (ny==1) return "alpha"; if (ny==2) return "z"; return ""; } double Operator_Cylinder::GetNodeWidth(int ny, const unsigned int pos[3], bool dualMesh) const { if ((ny<0) || (ny>2)) return 0.0; if (pos[ny]>=numLines[ny]) return 0.0; double width = Operator_Multithread::GetEdgeLength(ny,pos,!dualMesh); if (ny==1) width *= GetDiscLine(0,pos[0],dualMesh); return width; } double Operator_Cylinder::GetNodeArea(int ny, const unsigned int pos[3], bool dualMesh) const { if (pos[ny]>=numLines[ny]) return 0.0; if (pos[0]>=numLines[0]) return 0.0; if (ny==2) { double da = Operator_Multithread::GetEdgeLength(1,pos,dualMesh)/gridDelta; double r1,r2; if (dualMesh) { r1 = GetDiscLine(0,pos[0],false)*gridDelta; r2 = r1 + GetEdgeLength(0,pos,false); } else { r2 = GetDiscLine(0,pos[0],!dualMesh)*gridDelta; r1 = r2 - GetEdgeLength(0,pos,true); } if (r1<=0) return da/2 * pow(r2,2); else return da/2* (pow(r2,2) - pow(r1,2)); } return Operator_Multithread::GetNodeArea(ny,pos,dualMesh); } double Operator_Cylinder::GetEdgeLength(int ny, const unsigned int pos[3], bool dualMesh) const { double length = Operator_Multithread::GetEdgeLength(ny,pos,dualMesh); if (ny!=1) return length; return length * GetDiscLine(0,pos[0],dualMesh); } double Operator_Cylinder::GetEdgeArea(int ny, const unsigned int pos[3], bool dualMesh) const { if (ny!=0) return GetNodeArea(ny,pos,dualMesh); return GetEdgeLength(1,pos,!dualMesh) * GetEdgeLength(2,pos,!dualMesh); } bool Operator_Cylinder::SetGeometryCSX(ContinuousStructure* geo) { if (Operator_Multithread::SetGeometryCSX(geo)==false) return false; double minmaxA = fabs(discLines[1][numLines[1]-1]-discLines[1][0]); if (fabs(minmaxA-2*PI) < (2*PI)/10/numLines[1]) //check minmaxA smaller then a tenth of average alpha-width { cout << "Operator_Cylinder::SetGeometryCSX: Alpha is a full 2*PI => closed Cylinder..." << endl; CC_closedAlpha = true; discLines[1][numLines[1]-1] = discLines[1][0] + 2*PI; cerr << "Operator_Cylinder::SetGeometryCSX: Warning, not handling the disc-line width and material averaging correctly yet for a closed cylinder..." << endl; if (MainOp->GetIndexDelta(1,0)-MainOp->GetIndexDelta(1,numLines[1]-2) > (2*PI)/10/numLines[1]) { cerr << "Operator_Cylinder::SetGeometryCSX: first and last angle delta must be the same... deviation to large..." << MainOp->GetIndexDelta(1,0) - MainOp->GetIndexDelta(1,numLines[1]-2) << endl; exit(1); } if (MainOp->GetIndexDelta(1,0)-MainOp->GetIndexDelta(1,numLines[1]-2) > 0) { cerr << "Operator_Cylinder::SetGeometryCSX: first and last angle delta must be the same... auto correction of deviation: " << MainOp->GetIndexDelta(1,0) - MainOp->GetIndexDelta(1,numLines[1]-2) << endl; discLines[1][numLines[1]-2] = discLines[1][numLines[1]-1]-MainOp->GetIndexDelta(1,0); } } else if (minmaxA>2*PI) { cerr << "Operator_Cylinder::SetGeometryCSX: Alpha Max-Min must not be larger than 2*PI!!!" << endl; Reset(); return false; } else { CC_closedAlpha=false; } if (discLines[0][0]<0) { cerr << "Operator_Cylinder::SetGeometryCSX: r<0 not allowed in Cylinder Coordinates!!!" << endl; Reset(); return false; } else if (discLines[0][0]==0.0) { cout << "Operator_Cylinder::SetGeometryCSX: r=0 included..." << endl; CC_R0_included= true; //also needed for correct ec-calculation } if (CC_closedAlpha || CC_R0_included) this->AddExtension(new Operator_Ext_Cylinder(this)); return true; } void Operator_Cylinder::ApplyElectricBC(bool* dirs) { if (dirs==NULL) return; if (CC_closedAlpha) { dirs[2]=0; dirs[3]=0; //no PEC in alpha directions... } if (CC_R0_included) { // E in alpha direction ( aka volt[1][x][y][z] ) is not defined for r==0 --> always zero... unsigned int pos[3] = {0,0,0}; for (pos[1]=0; pos[1]IsCylinderCoordsSave()) m_Op_exts.push_back(op_ext); else cerr << "Operator_Cylinder::AddExtension: Warning: Operator extension \"" << op_ext->GetExtensionName() << "\" is not compatible with cylinder-coords!! skipping...!" << endl; } double Operator_Cylinder::CalcTimestep() { return CalcTimestep_Var1(); }