function pass = fieldprobes( openEMS_options, options ) % % infinitesimal dipole in free-space % % E/H-field probes are compared to hdf5 field dumps % pass = 1; physical_constants; ENABLE_PLOTS = 1; CLEANUP = 1; % if enabled and result is PASS, remove simulation folder STOP_IF_FAILED = 1; % if enabled and result is FAILED, stop with error VERBOSE = 1; SILENT = 0; % 0=show openEMS output if nargin < 1 openEMS_options = ''; end if nargin < 2 options = ''; end if any(strcmp( options, 'run_testsuite' )) ENABLE_PLOTS = 0; STOP_IF_FAILED = 0; SILENT = 1; VERBOSE = 0; end % LIMITS limit_max_time_diff = 1e-15; limit_max_amp_diff = 1e-13; limit_min_z_amp = 5e-3; limit_max_h_amp_diff = 1e-17; limit_min_h_amp = 1e-7; % setup the simulation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% drawingunit = 1e-6; % specify everything in um Sim_Path = 'tmp_fieldprobes'; Sim_CSX = 'tmp.xml'; f_max = 1e9; lambda = c0/f_max /drawingunit; % setup geometry values dipole_length = lambda/50; % setup CSXCAD geometry & mesh %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% CSX = InitCSX(); mesh.x = -dipole_length*20:dipole_length/2:dipole_length*20; mesh.y = -dipole_length*20:dipole_length/2:dipole_length*20; mesh.z = -dipole_length*20:dipole_length/2:dipole_length*20; CSX = DefineRectGrid( CSX, drawingunit, mesh ); % excitation CSX = AddExcitation( CSX, 'infDipole', 1, [0 0 1] ); start = [0, 0, -dipole_length/2]; stop = [0, 0, +dipole_length/2]; CSX = AddBox( CSX, 'infDipole', 1, start, stop ); % NFFF contour s1 = [-4.5, -4.5, -4.5] * dipole_length/2; s2 = [ 4.5, 4.5, 4.5] * dipole_length/2; CSX = AddBox( AddDump(CSX,'Et_xn','DumpType',0,'DumpMode',0,'FileType',1), 'Et_xn', 0, s1, [s1(1) s2(2) s2(3)] ); CSX = AddBox( AddDump(CSX,'Et_xp','DumpType',0,'DumpMode',0,'FileType',1), 'Et_xp', 0, [s2(1) s1(2) s1(3)], s2 ); CSX = AddBox( AddDump(CSX,'Et_yn','DumpType',0,'DumpMode',0,'FileType',1), 'Et_yn', 0, s1, [s2(1) s1(2) s2(3)] ); CSX = AddBox( AddDump(CSX,'Et_yp','DumpType',0,'DumpMode',0,'FileType',1), 'Et_yp', 0, [s1(1) s2(2) s1(3)], s2 ); CSX = AddBox( AddDump(CSX,'Et_zn','DumpType',0,'DumpMode',0,'FileType',1), 'Et_zn', 0, s1, [s2(1) s2(2) s1(3)] ); CSX = AddBox( AddDump(CSX,'Et_zp','DumpType',0,'DumpMode',0,'FileType',1), 'Et_zp', 0, [s1(1) s1(2) s2(3)], s2 ); CSX = AddBox( AddDump(CSX,'Ht_xn','DumpType',1,'DumpMode',0,'FileType',1), 'Ht_xn', 0, s1, [s1(1) s2(2) s2(3)] ); CSX = AddBox( AddDump(CSX,'Ht_xp','DumpType',1,'DumpMode',0,'FileType',1), 'Ht_xp', 0, [s2(1) s1(2) s1(3)], s2 ); CSX = AddBox( AddDump(CSX,'Ht_yn','DumpType',1,'DumpMode',0,'FileType',1), 'Ht_yn', 0, s1, [s2(1) s1(2) s2(3)] ); CSX = AddBox( AddDump(CSX,'Ht_yp','DumpType',1,'DumpMode',0,'FileType',1), 'Ht_yp', 0, [s1(1) s2(2) s1(3)], s2 ); CSX = AddBox( AddDump(CSX,'Ht_zn','DumpType',1,'DumpMode',0,'FileType',1), 'Ht_zn', 0, s1, [s2(1) s2(2) s1(3)] ); CSX = AddBox( AddDump(CSX,'Ht_zp','DumpType',1,'DumpMode',0,'FileType',1), 'Ht_zp', 0, [s1(1) s1(2) s2(3)], s2 ); % E-field probes coords{1} = [s1(1) 0 0]; CSX = AddPoint( AddProbe(CSX,'et1',2), 'et1', 0, coords{1} ); coords{2} = [s2(1) 0 0]; CSX = AddPoint( AddProbe(CSX,'et2',2), 'et2', 0, coords{2} ); coords{3} = [0 s1(2) 0]; CSX = AddPoint( AddProbe(CSX,'et3',2), 'et3', 0, coords{3} ); coords{4} = [0 s2(2) 0]; CSX = AddPoint( AddProbe(CSX,'et4',2), 'et4', 0, coords{4} ); coords{5} = [0 0 s1(3)]; CSX = AddPoint( AddProbe(CSX,'et5',2), 'et5', 0, coords{5} ); coords{6} = [0 0 s2(3)]; CSX = AddPoint( AddProbe(CSX,'et6',2), 'et6', 0, coords{6} ); % H-field probes CSX = AddPoint( AddProbe(CSX,'ht1',3), 'ht1', 0, [s1(1) 0 0] ); CSX = AddPoint( AddProbe(CSX,'ht2',3), 'ht2', 0, [s2(1) 0 0] ); CSX = AddPoint( AddProbe(CSX,'ht3',3), 'ht3', 0, [0 s1(2) 0] ); CSX = AddPoint( AddProbe(CSX,'ht4',3), 'ht4', 0, [0 s2(2) 0] ); CSX = AddPoint( AddProbe(CSX,'ht5',3), 'ht5', 0, [0 0 s1(3)] ); CSX = AddPoint( AddProbe(CSX,'ht6',3), 'ht6', 0, [0 0 s2(3)] ); % setup FDTD parameters & excitation function %%%%%%%%%%%%%%%%%%%%%%%%%%%% max_timesteps = 10000; min_decrement = 1e-6; FDTD = InitFDTD( max_timesteps, min_decrement,'OverSampling',10 ); FDTD = SetGaussExcite( FDTD, 0, f_max ); BC = [2 2 2 2 2 2]; FDTD = SetBoundaryCond( FDTD, BC ); % Write openEMS compatible xml-file %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [~,~,~] = rmdir(Sim_Path,'s'); [~,~,~] = mkdir(Sim_Path); WriteOpenEMS([Sim_Path '/' Sim_CSX],FDTD,CSX); % run openEMS folder = fileparts( mfilename('fullpath') ); Settings.LogFile = [folder '/' Sim_Path '/openEMS.log']; Settings.Silent = SILENT; RunOpenEMS( Sim_Path, Sim_CSX, openEMS_options, Settings ); %% POSTPROCESS filenames_E = {'Et_xn.h5','Et_xp.h5','Et_yn.h5','Et_yp.h5','Et_zn.h5','Et_zp.h5'}; filenames_H = {'Ht_xn.h5','Ht_xp.h5','Ht_yn.h5','Ht_yp.h5','Ht_zn.h5','Ht_zp.h5'}; for n=1:numel(filenames_E) Et{n} = ReadHDF5FieldData( [Sim_Path '/' filenames_E{n}] ); E_mesh{n} = ReadHDF5Mesh( [Sim_Path '/' filenames_E{n}] ); Ht{n} = ReadHDF5FieldData( [Sim_Path '/' filenames_H{n}] ); H_mesh{n} = ReadHDF5Mesh( [Sim_Path '/' filenames_H{n}] ); Et_probe{n} = load( [Sim_Path '/et' num2str(n)] ); Ht_probe{n} = load( [Sim_Path '/ht' num2str(n)] ); end if ENABLE_PLOTS close all end % % E-fields % if VERBOSE, disp( 'extracting field components from field dumps...' ); end for n=1:6 if numel(E_mesh{n}.lines{1}) > 1 x_idx = interp1( E_mesh{n}.lines{1}, 1:numel(E_mesh{n}.lines{1}), coords{n}(1), 'nearest' ); else x_idx = 1; end if numel(E_mesh{n}.lines{2}) > 1 y_idx = interp1( E_mesh{n}.lines{2}, 1:numel(E_mesh{n}.lines{2}), coords{n}(2), 'nearest' ); else y_idx = 1; end if numel(E_mesh{n}.lines{3}) > 1 z_idx = interp1( E_mesh{n}.lines{3}, 1:numel(E_mesh{n}.lines{3}), coords{n}(3), 'nearest' ); else z_idx = 1; end if VERBOSE disp( ['n=' num2str(n) ' coords: (' num2str(E_mesh{n}.lines{1}(x_idx)) ','... num2str(E_mesh{n}.lines{2}(y_idx)) ','... num2str(E_mesh{n}.lines{3}(z_idx)) ') m indices: ('... num2str(x_idx) ',' num2str(y_idx) ',' num2str(z_idx) ')'] ); end field_x = zeros(numel(Et{n}.values),1); field_y = zeros(numel(Et{n}.values),1); field_z = zeros(numel(Et{n}.values),1); for t=1:numel(Et{n}.values) field_x(t) = squeeze(Et{n}.values{t}(x_idx,y_idx,z_idx,1)); field_y(t) = squeeze(Et{n}.values{t}(x_idx,y_idx,z_idx,2)); field_z(t) = squeeze(Et{n}.values{t}(x_idx,y_idx,z_idx,3)); end field_t = reshape( Et{n}.time, [], 1 ); % check vector length if numel(field_x) ~= size(Et_probe{n},1) pass = 0; disp( 'probes/fieldprobes.m (vector length): * FAILED *' ); break end % check absolute simulation time if any(abs(field_t - Et_probe{n}(:,1)) > limit_max_time_diff) pass = 0; disp( 'probes/fieldprobes.m (time inconsistant): * FAILED *' ); break end if ENABLE_PLOTS figure subplot(2,3,1); plot( field_t, [field_x Et_probe{n}(:,2)] ); subplot(2,3,2); plot( field_t, [field_y Et_probe{n}(:,3)] ); subplot(2,3,3); plot( field_t, [field_z Et_probe{n}(:,4)] ); subplot(2,3,4); plot( field_t, field_x - Et_probe{n}(:,2) ); subplot(2,3,5); plot( field_t, field_y - Et_probe{n}(:,3) ); subplot(2,3,6); plot( field_t, field_z - Et_probe{n}(:,4) ); end % difference if any( abs(field_x - Et_probe{n}(:,2)) > limit_max_amp_diff ) || ... any( abs(field_y - Et_probe{n}(:,3)) > limit_max_amp_diff ) || ... any( abs(field_z - Et_probe{n}(:,4)) > limit_max_amp_diff ) pass = 0; disp( 'probes/fieldprobes.m (amplitudes differ too much): * FAILED *' ); break end % check absolute field strength of z component if max(abs(field_z)) < limit_min_z_amp pass = 0; disp( 'probes/fieldprobes.m (amplitude of z-component too small): * FAILED *' ); break end end % % H-fields % if VERBOSE, disp( 'extracting field components from field dumps...' ); end for n=1:6 if numel(H_mesh{n}.lines{1}) > 1 x_idx = interp1( H_mesh{n}.lines{1}, 1:numel(H_mesh{n}.lines{1}), coords{n}(1), 'nearest' ); else x_idx = 1; end if numel(E_mesh{n}.lines{2}) > 1 y_idx = interp1( H_mesh{n}.lines{2}, 1:numel(H_mesh{n}.lines{2}), coords{n}(2), 'nearest' ); else y_idx = 1; end if numel(E_mesh{n}.lines{3}) > 1 z_idx = interp1( H_mesh{n}.lines{3}, 1:numel(H_mesh{n}.lines{3}), coords{n}(3), 'nearest' ); else z_idx = 1; end if VERBOSE disp( ['n=' num2str(n) ' coords: (' num2str(E_mesh{n}.lines{1}(x_idx)) ','... num2str(E_mesh{n}.lines{2}(y_idx)) ','... num2str(E_mesh{n}.lines{3}(z_idx)) ') m indices: ('... num2str(x_idx) ',' num2str(y_idx) ',' num2str(z_idx) ')'] ); end field_x = zeros(numel(Ht{n}.values),1); field_y = zeros(numel(Ht{n}.values),1); field_z = zeros(numel(Ht{n}.values),1); for t=1:numel(Ht{n}.values) field_x(t) = squeeze(Ht{n}.values{t}(x_idx,y_idx,z_idx,1)); field_y(t) = squeeze(Ht{n}.values{t}(x_idx,y_idx,z_idx,2)); field_z(t) = squeeze(Ht{n}.values{t}(x_idx,y_idx,z_idx,3)); end field_t = reshape( Ht{n}.time, [], 1 ); % check vector length if numel(field_x) ~= size(Ht_probe{n},1) pass = 0; disp( 'probes/fieldprobes.m (vector length): * FAILED *' ); break end % check absolute simulation time if any(abs(field_t - Ht_probe{n}(:,1)) > limit_max_time_diff) pass = 0; disp( 'probes/fieldprobes.m (time inconsistant): * FAILED *' ); break end if ENABLE_PLOTS figure subplot(2,3,1); plot( field_t, [field_x Ht_probe{n}(:,2)] ); subplot(2,3,2); plot( field_t, [field_y Ht_probe{n}(:,3)] ); subplot(2,3,3); plot( field_t, [field_z Ht_probe{n}(:,4)] ); subplot(2,3,4); plot( field_t, field_x - Ht_probe{n}(:,2) ); subplot(2,3,5); plot( field_t, field_y - Ht_probe{n}(:,3) ); subplot(2,3,6); plot( field_t, field_z - Ht_probe{n}(:,4) ); end % difference if any( abs(field_x - Ht_probe{n}(:,2)) > limit_max_h_amp_diff ) || ... any( abs(field_y - Ht_probe{n}(:,3)) > limit_max_h_amp_diff ) || ... any( abs(field_z - Ht_probe{n}(:,4)) > limit_max_h_amp_diff ) pass = 0; disp( 'probes/fieldprobes.m (amplitudes differ too much): * FAILED *' ); break end % check absolute field strength of z component if (max(abs(field_x)) < limit_min_h_amp) || (max(abs(field_y)) < limit_min_h_amp) pass = 0; disp( 'probes/fieldprobes.m (amplitude of x- or y-component too small): * FAILED *' ); break end end if pass disp( 'probes/fieldprobes.m: pass' ); end if pass && CLEANUP rmdir( Sim_Path, 's' ); end if ~pass && STOP_IF_FAILED error 'test failed'; end