/*
* Copyright (C) 2012 Thorsten Liebig (Thorsten.Liebig@gmx.de)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
#include "nf2ff_calc.h"
#include "../tools/array_ops.h"
#include "../tools/useful.h"
#include
#include
#include
#include
#include
#include
#include
nf2ff_calc_thread::nf2ff_calc_thread(nf2ff_calc* nfc, unsigned int start, unsigned int stop, unsigned int threadID, nf2ff_data &data)
{
m_nf_calc = nfc;
m_start = start;
m_stop = stop;
m_threadID = threadID;
m_data = data;
}
void nf2ff_calc_thread::operator()()
{
m_nf_calc->m_Barrier->wait(); // start
int ny = m_data.ny;
int nP = (ny+1)%3;
int nPP = (ny+2)%3;
unsigned int* numLines = m_data.numLines;
float* normDir = m_data.normDir;
float **lines = m_data.lines;
float* edge_length_P = m_data.edge_length_P;
float* edge_length_PP = m_data.edge_length_PP;
unsigned int pos[3];
unsigned int pos_t=0;
unsigned int num_t=m_stop-m_start+1;
complex**** Js=m_data.Js;
complex**** Ms=m_data.Ms;
complex**** E_field=m_data.E_field;
complex**** H_field=m_data.H_field;
// calc Js and Ms (eq. 8.15a/b)
pos[ny]=0;
for (pos_t=0; pos_t** m_Nt=m_data.m_Nt;
complex** m_Np=m_data.m_Np;
complex** m_Lt=m_data.m_Lt;
complex** m_Lp=m_data.m_Lp;
// calc local Nt,Np,Lt and Lp
float area;
float cosT_cosP,cosP_sinT;
float cosT_sinP,sinT_sinP;
float sinT,sinP;
float cosP,cosT;
float r_cos_psi;
float k = 2*M_PI*m_nf_calc->m_freq/__C0__;
complex exp_jkr;
complex _I_(0,1);
for (unsigned int tn=0;tnm_numTheta;++tn)
for (unsigned int pn=0;pnm_numPhi;++pn)
{
sinT = sin(m_nf_calc->m_theta[tn]);
sinP = sin(m_nf_calc->m_phi[pn]);
cosT = cos(m_nf_calc->m_theta[tn]);
cosP = cos(m_nf_calc->m_phi[pn]);
cosT_cosP = cosT*cosP;
cosT_sinP = cosT*sinP;
cosP_sinT = cosP*sinT;
sinT_sinP = sinP*sinT;
for (pos_t=0; pos_tm_Barrier->wait(); //combine all thread local Nt,Np,Lt and Lp
m_nf_calc->m_Barrier->wait(); //wait for termination
}
/***********************************************************************/
nf2ff_calc::nf2ff_calc(float freq, vector theta, vector phi)
{
m_freq = freq;
m_numTheta = theta.size();
m_theta = new float[m_numTheta];
for (size_t n=0;n >(numLines);
m_E_phi = Create2DArray >(numLines);
m_H_theta = Create2DArray >(numLines);
m_H_phi = Create2DArray >(numLines);
m_P_rad = Create2DArray(numLines);
m_centerCoord[0]=m_centerCoord[1]=m_centerCoord[2]=0;
m_radPower = 0;
m_maxDir = 0;
m_radius = 1;
m_Barrier = NULL;
m_numThreads = boost::thread::hardware_concurrency();
}
nf2ff_calc::~nf2ff_calc()
{
delete[] m_phi;
m_phi = NULL;
delete[] m_theta;
m_theta = NULL;
unsigned int numLines[2] = {m_numTheta, m_numPhi};
Delete2DArray(m_E_theta,numLines);
m_E_theta = NULL;
Delete2DArray(m_E_phi,numLines);
m_E_phi = NULL;
Delete2DArray(m_H_theta,numLines);
m_H_theta = NULL;
Delete2DArray(m_H_phi,numLines);
m_H_phi = NULL;
Delete2DArray(m_P_rad,numLines);
m_P_rad = NULL;
delete m_Barrier;
m_Barrier = NULL;
}
bool nf2ff_calc::AddPlane(float **lines, unsigned int* numLines, complex**** E_field, complex**** H_field)
{
//find normal direction
int ny = -1;
int nP,nPP;
for (int n=0;n<3;++n)
{
nP = (n+1)%3;
nPP = (n+2)%3;
if ((numLines[n]==1) && (numLines[nP]>2) && (numLines[nPP]>2))
ny=n;
}
nP = (ny+1)%3;
nPP = (ny+2)%3;
if (ny<0)
{
cerr << "nf2ff_calc::AddPlane: Error can't determine normal direction..." << endl;
return false;
}
complex**** Js = Create_N_3DArray >(numLines);
complex**** Ms = Create_N_3DArray >(numLines);
float normDir[3]= {0,0,0};
if (lines[ny][0]>=m_centerCoord[ny])
normDir[ny]=1;
else
normDir[ny]=-1;
unsigned int pos[3];
float edge_length_P[numLines[nP]];
for (unsigned int n=1;n power = 0;
float area;
for (pos[0]=0; pos[0] jpt = AssignJobs2Threads(numLines[nP], m_numThreads, true);
m_numThreads = jpt.size();
nf2ff_data thread_data[m_numThreads];
m_Barrier = new boost::barrier(m_numThreads+1); // numThread workers + 1 controller
unsigned int start=0;
unsigned int stop=jpt.at(0)-1;
for (unsigned int n=0; n >(numAngles);
thread_data[n].m_Np=Create2DArray >(numAngles);
thread_data[n].m_Lt=Create2DArray >(numAngles);
thread_data[n].m_Lp=Create2DArray >(numAngles);
boost::thread *t = new boost::thread( nf2ff_calc_thread(this,start,stop,n,thread_data[n]) );
m_thread_group.add_thread( t );
start = stop+1;
if (nwait(); //start
// threads: calc Js and Ms (eq. 8.15a/b)
// threads calc their local Nt,Np,Lt and Lp
m_Barrier->wait(); //combine all thread local Nt,Np,Lt and Lp
//cleanup E- & H-Fields
Delete_N_3DArray(E_field,numLines);
Delete_N_3DArray(H_field,numLines);
complex** Nt = Create2DArray >(numAngles);
complex** Np = Create2DArray >(numAngles);
complex** Lt = Create2DArray >(numAngles);
complex** Lp = Create2DArray >(numAngles);
for (unsigned int n=0; nwait(); //wait for termination
m_thread_group.join_all(); // wait for termination
delete m_Barrier;
m_Barrier = NULL;
//cleanup Js & Ms
Delete_N_3DArray(Js,numLines);
Delete_N_3DArray(Ms,numLines);
// calc equations 8.23a/b and 8.24a/b
float k = 2*M_PI*m_freq/__C0__;
complex factor(0,k/4.0/M_PI/m_radius);
complex f_exp(0,-1*k*m_radius);
factor *= exp(f_exp);
complex Z0 = __Z0__;
float P_max = 0;
for (unsigned int tn=0;tnP_max)
P_max = m_P_rad[tn][pn];
}
//cleanup Nx and Lx
Delete2DArray(Nt,numAngles);
Delete2DArray(Np,numAngles);
Delete2DArray(Lt,numAngles);
Delete2DArray(Lp,numAngles);
m_maxDir = 4*M_PI*P_max / m_radPower;
return true;
}