rewritten SAR calculation
parent
c2abe89440
commit
f62da05c12
|
@ -69,6 +69,9 @@ public:
|
|||
*/
|
||||
virtual double GetEdgeArea(int ny, const unsigned int pos[3], bool dualMesh = false) const =0;
|
||||
|
||||
//! Get the volume of an FDTD cell
|
||||
virtual double GetCellVolume(const unsigned int pos[3], bool dualMesh = false) const =0;
|
||||
|
||||
//! Snap the given coodinates to mesh indices, return box dimension
|
||||
virtual bool SnapToMesh(const double* coord, unsigned int* uicoord, bool dualMesh=false, bool* inside=NULL) const =0;
|
||||
|
||||
|
|
|
@ -241,7 +241,6 @@ FDTD_FLOAT**** ProcessFields::CalcField()
|
|||
switch (m_DumpType)
|
||||
{
|
||||
case E_FIELD_DUMP:
|
||||
case SAR_LOCAL_DUMP:
|
||||
for (unsigned int i=0; i<numLines[0]; ++i)
|
||||
{
|
||||
pos[0]=posLines[0][i];
|
||||
|
@ -317,8 +316,9 @@ FDTD_FLOAT**** ProcessFields::CalcField()
|
|||
}
|
||||
}
|
||||
return field;
|
||||
}
|
||||
default:
|
||||
cerr << "ProcessFields::CalcField(): Error, unknown dump type..." << endl;
|
||||
return field;
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -26,6 +26,25 @@ ProcessFieldsSAR::ProcessFieldsSAR(Engine_Interface_Base* eng_if) : ProcessField
|
|||
|
||||
ProcessFieldsSAR::~ProcessFieldsSAR()
|
||||
{
|
||||
for (size_t n = 0; n<m_FD_Fields.size(); ++n)
|
||||
{
|
||||
Delete_N_3DArray(m_E_FD_Fields.at(n),numLines);
|
||||
Delete_N_3DArray(m_J_FD_Fields.at(n),numLines);
|
||||
}
|
||||
m_E_FD_Fields.clear();
|
||||
m_J_FD_Fields.clear();
|
||||
}
|
||||
|
||||
void ProcessFieldsSAR::SetSubSampling(unsigned int subSampleRate, int dir)
|
||||
{
|
||||
cerr << "ProcessFieldsSAR::SetSubSampling: Warning: Defining a sub-sampling for SAR calculation is not recommended!!! Expect false results!" << endl;
|
||||
ProcessFieldsFD::SetSubSampling(subSampleRate,dir);
|
||||
}
|
||||
|
||||
void ProcessFieldsSAR::SetOptResolution(double optRes, int dir)
|
||||
{
|
||||
cerr << "ProcessFieldsSAR::SetOptResolution: Warning: Defining a sub-sampling for SAR calculation is not recommended!!! Expect false results!" << endl;
|
||||
ProcessFieldsFD::SetOptResolution(optRes,dir);
|
||||
}
|
||||
|
||||
void ProcessFieldsSAR::InitProcess()
|
||||
|
@ -36,71 +55,143 @@ void ProcessFieldsSAR::InitProcess()
|
|||
cerr << "ProcessFieldsSAR::InitProcess(): Error, wrong dump type... this should not happen... skipping!" << endl;
|
||||
return;
|
||||
}
|
||||
if (m_Eng_Interface->GetInterpolationType()!=Engine_Interface_Base::NODE_INTERPOLATE)
|
||||
if (m_Eng_Interface->GetInterpolationType()!=Engine_Interface_Base::CELL_INTERPOLATE)
|
||||
{
|
||||
cerr << "ProcessFieldsSAR::InitProcess(): Warning, interpolation type is not supported, resetting to NODE!" << endl;
|
||||
SetDumpMode2Node();
|
||||
cerr << "ProcessFieldsSAR::InitProcess(): Warning, interpolation type is not supported, resetting to CELL!" << endl;
|
||||
SetDumpMode2Cell();
|
||||
}
|
||||
ProcessFieldsFD::InitProcess();
|
||||
}
|
||||
|
||||
double ProcessFieldsSAR::GetKappaDensityRatio(const unsigned int* pos)
|
||||
{
|
||||
|
||||
double coord[3] = {discLines[0][pos[0]],discLines[1][pos[1]],discLines[2][pos[2]]};
|
||||
unsigned int OpPos[] = {posLines[0][pos[0]],posLines[1][pos[1]],posLines[2][pos[2]]};
|
||||
ContinuousStructure* CSX = Op->GetGeometryCSX();
|
||||
CSProperties* prop = CSX->GetPropertyByCoordPriority(coord,CSProperties::MATERIAL);
|
||||
|
||||
if (prop==0)
|
||||
return 0.0;
|
||||
CSPropMaterial* matProp = dynamic_cast<CSPropMaterial*>(prop);
|
||||
double density = matProp->GetDensityWeighted(coord);
|
||||
|
||||
if (density==0)
|
||||
return 0.0;
|
||||
|
||||
double kappa = 0;
|
||||
double max_kappa = 0;
|
||||
|
||||
for (int n=0;n<3;++n)
|
||||
{
|
||||
kappa = Op->GetDiscMaterial(1,n,OpPos);
|
||||
if (kappa>max_kappa)
|
||||
max_kappa = kappa;
|
||||
if (OpPos[n]>0)
|
||||
{
|
||||
--OpPos[n];
|
||||
kappa = Op->GetDiscMaterial(1,n,OpPos);
|
||||
if (kappa>max_kappa)
|
||||
max_kappa = kappa;
|
||||
++OpPos[n];
|
||||
}
|
||||
}
|
||||
|
||||
return max_kappa/density;
|
||||
}
|
||||
|
||||
void ProcessFieldsSAR::DumpFDData()
|
||||
{
|
||||
unsigned int pos[3];
|
||||
FDTD_FLOAT*** SAR = Create3DArray<float>(numLines);
|
||||
std::complex<float>**** field_fd = NULL;
|
||||
double kdRatio = 0;
|
||||
if (Enabled==false) return;
|
||||
|
||||
//create data structures...
|
||||
for (size_t n = 0; n<m_FD_Samples.size(); ++n)
|
||||
{
|
||||
field_fd = m_FD_Fields.at(n);
|
||||
m_E_FD_Fields.push_back(Create_N_3DArray<std::complex<float> >(numLines));
|
||||
m_J_FD_Fields.push_back(Create_N_3DArray<std::complex<float> >(numLines));
|
||||
}
|
||||
}
|
||||
|
||||
int ProcessFieldsSAR::Process()
|
||||
{
|
||||
if (Enabled==false) return -1;
|
||||
if (CheckTimestep()==false) return GetNextInterval();
|
||||
|
||||
if ((m_FD_Interval==0) || (m_Eng_Interface->GetNumberOfTimesteps()%m_FD_Interval!=0))
|
||||
return GetNextInterval();
|
||||
|
||||
std::complex<float>**** field_fd = NULL;
|
||||
unsigned int pos[3];
|
||||
double T;
|
||||
FDTD_FLOAT**** field_td=NULL;
|
||||
|
||||
// calc E-field
|
||||
m_DumpType = E_FIELD_DUMP;
|
||||
field_td = CalcField();
|
||||
T = m_Eng_Interface->GetTime(m_dualTime);
|
||||
for (size_t n = 0; n<m_FD_Samples.size(); ++n)
|
||||
{
|
||||
std::complex<float> exp_jwt_2_dt = std::exp( (std::complex<float>)(-2.0 * _I * M_PI * m_FD_Samples.at(n) * T) );
|
||||
exp_jwt_2_dt *= 2; // *2 for single-sided spectrum
|
||||
exp_jwt_2_dt *= Op->GetTimestep() * m_FD_Interval; // multiply with timestep-interval
|
||||
field_fd = m_E_FD_Fields.at(n);
|
||||
for (pos[0]=0; pos[0]<numLines[0]; ++pos[0])
|
||||
{
|
||||
for (pos[1]=0; pos[1]<numLines[1]; ++pos[1])
|
||||
{
|
||||
for (pos[2]=0; pos[2]<numLines[2]; ++pos[2])
|
||||
{
|
||||
kdRatio = GetKappaDensityRatio(pos);
|
||||
SAR[pos[0]][pos[1]][pos[2]] = kdRatio*pow(abs(field_fd[0][pos[0]][pos[1]][pos[2]]) , 2);
|
||||
SAR[pos[0]][pos[1]][pos[2]] = kdRatio*pow(abs(field_fd[1][pos[0]][pos[1]][pos[2]]) , 2);
|
||||
SAR[pos[0]][pos[1]][pos[2]] = kdRatio*pow(abs(field_fd[2][pos[0]][pos[1]][pos[2]]) , 2);
|
||||
field_fd[0][pos[0]][pos[1]][pos[2]] += field_td[0][pos[0]][pos[1]][pos[2]] * exp_jwt_2_dt;
|
||||
field_fd[1][pos[0]][pos[1]][pos[2]] += field_td[1][pos[0]][pos[1]][pos[2]] * exp_jwt_2_dt;
|
||||
field_fd[2][pos[0]][pos[1]][pos[2]] += field_td[2][pos[0]][pos[1]][pos[2]] * exp_jwt_2_dt;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
Delete_N_3DArray<FDTD_FLOAT>(field_td,numLines);
|
||||
|
||||
// calc J-field
|
||||
m_DumpType = J_FIELD_DUMP;
|
||||
field_td = CalcField();
|
||||
T = m_Eng_Interface->GetTime(m_dualTime);
|
||||
for (size_t n = 0; n<m_FD_Samples.size(); ++n)
|
||||
{
|
||||
std::complex<float> exp_jwt_2_dt = std::exp( (std::complex<float>)(-2.0 * _I * M_PI * m_FD_Samples.at(n) * T) );
|
||||
exp_jwt_2_dt *= 2; // *2 for single-sided spectrum
|
||||
exp_jwt_2_dt *= Op->GetTimestep() * m_FD_Interval; // multiply with timestep-interval
|
||||
field_fd = m_J_FD_Fields.at(n);
|
||||
for (pos[0]=0; pos[0]<numLines[0]; ++pos[0])
|
||||
{
|
||||
for (pos[1]=0; pos[1]<numLines[1]; ++pos[1])
|
||||
{
|
||||
for (pos[2]=0; pos[2]<numLines[2]; ++pos[2])
|
||||
{
|
||||
field_fd[0][pos[0]][pos[1]][pos[2]] += field_td[0][pos[0]][pos[1]][pos[2]] * exp_jwt_2_dt;
|
||||
field_fd[1][pos[0]][pos[1]][pos[2]] += field_td[1][pos[0]][pos[1]][pos[2]] * exp_jwt_2_dt;
|
||||
field_fd[2][pos[0]][pos[1]][pos[2]] += field_td[2][pos[0]][pos[1]][pos[2]] * exp_jwt_2_dt;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
Delete_N_3DArray<FDTD_FLOAT>(field_td,numLines);
|
||||
|
||||
//reset dump type
|
||||
m_DumpType = SAR_LOCAL_DUMP;
|
||||
|
||||
++m_FD_SampleCount;
|
||||
return GetNextInterval();
|
||||
}
|
||||
|
||||
void ProcessFieldsSAR::DumpFDData()
|
||||
{
|
||||
unsigned int pos[3];
|
||||
unsigned int orig_pos[3];
|
||||
FDTD_FLOAT*** SAR = Create3DArray<float>(numLines);
|
||||
std::complex<float>**** E_field_fd = NULL;
|
||||
std::complex<float>**** J_field_fd = NULL;
|
||||
double coord[3];
|
||||
double density;
|
||||
ContinuousStructure* CSX = Op->GetGeometryCSX();
|
||||
CSProperties* prop = NULL;
|
||||
CSPropMaterial* matProp = NULL;
|
||||
|
||||
double power;
|
||||
|
||||
for (size_t n = 0; n<m_FD_Samples.size(); ++n)
|
||||
{
|
||||
E_field_fd = m_E_FD_Fields.at(n);
|
||||
J_field_fd = m_J_FD_Fields.at(n);
|
||||
power = 0;
|
||||
for (pos[0]=0; pos[0]<numLines[0]; ++pos[0])
|
||||
{
|
||||
orig_pos[0] = posLines[0][pos[0]];
|
||||
coord[0] = Op->GetDiscLine(0,orig_pos[0],true);
|
||||
for (pos[1]=0; pos[1]<numLines[1]; ++pos[1])
|
||||
{
|
||||
orig_pos[1] = posLines[1][pos[1]];
|
||||
coord[1] = Op->GetDiscLine(1,orig_pos[1],true);
|
||||
for (pos[2]=0; pos[2]<numLines[2]; ++pos[2])
|
||||
{
|
||||
orig_pos[2] = posLines[2][pos[2]];
|
||||
coord[2] = Op->GetDiscLine(2,orig_pos[2],true);
|
||||
prop = CSX->GetPropertyByCoordPriority(coord,CSProperties::MATERIAL);
|
||||
SAR[pos[0]][pos[1]][pos[2]] = 0.0;
|
||||
density=0.0;
|
||||
if (prop!=0)
|
||||
{
|
||||
matProp = dynamic_cast<CSPropMaterial*>(prop);
|
||||
density = matProp->GetDensityWeighted(coord);
|
||||
if (density>0)
|
||||
{
|
||||
SAR[pos[0]][pos[1]][pos[2]] = abs(E_field_fd[0][pos[0]][pos[1]][pos[2]]) * abs(J_field_fd[0][pos[0]][pos[1]][pos[2]]);
|
||||
SAR[pos[0]][pos[1]][pos[2]] += abs(E_field_fd[1][pos[0]][pos[1]][pos[2]]) * abs(J_field_fd[1][pos[0]][pos[1]][pos[2]]);
|
||||
SAR[pos[0]][pos[1]][pos[2]] += abs(E_field_fd[2][pos[0]][pos[1]][pos[2]]) * abs(J_field_fd[2][pos[0]][pos[1]][pos[2]]);
|
||||
SAR[pos[0]][pos[1]][pos[2]] *= 0.5/density;
|
||||
}
|
||||
else
|
||||
density=0.0;
|
||||
}
|
||||
power+=SAR[pos[0]][pos[1]][pos[2]]*Op->GetCellVolume(orig_pos)*density;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -126,6 +217,9 @@ void ProcessFieldsSAR::DumpFDData()
|
|||
float freq[1]={m_FD_Samples.at(n)};
|
||||
if (m_HDF5_Dump_File->WriteAtrribute("/FieldData/FD/"+ss.str(),"frequency",freq,1)==false)
|
||||
cerr << "ProcessFieldsSAR::Process: can't dump to file...! " << endl;
|
||||
float pow[1]={power};
|
||||
if (m_HDF5_Dump_File->WriteAtrribute("/FieldData/FD/"+ss.str(),"power",pow,1)==false)
|
||||
cerr << "ProcessFieldsSAR::Process: can't dump to file...! " << endl;
|
||||
}
|
||||
else
|
||||
cerr << "ProcessFieldsSAR::Process: unknown File-Type" << endl;
|
||||
|
|
|
@ -30,10 +30,19 @@ public:
|
|||
|
||||
virtual void InitProcess();
|
||||
|
||||
virtual int Process();
|
||||
|
||||
virtual void SetSubSampling(unsigned int subSampleRate, int dir=-1);
|
||||
|
||||
virtual void SetOptResolution(double optRes, int dir=-1);
|
||||
|
||||
protected:
|
||||
virtual void DumpFDData();
|
||||
|
||||
double GetKappaDensityRatio(const unsigned int* pos);
|
||||
//! frequency domain electric field storage
|
||||
vector<std::complex<float>****> m_E_FD_Fields;
|
||||
//! frequency domain current density storage
|
||||
vector<std::complex<float>****> m_J_FD_Fields;
|
||||
};
|
||||
|
||||
#endif // PROCESSFIELDS_SAR_H
|
||||
|
|
|
@ -181,6 +181,14 @@ double Operator::GetEdgeLength(int n, const unsigned int* pos, bool dualMesh) co
|
|||
}
|
||||
}
|
||||
|
||||
double Operator::GetCellVolume(const unsigned int pos[3], bool dualMesh) const
|
||||
{
|
||||
double vol=1;
|
||||
for (int n=0;n<3;++n)
|
||||
vol*=GetEdgeLength(n,pos,dualMesh);
|
||||
return vol;
|
||||
}
|
||||
|
||||
double Operator::GetNodeWidth(int ny, const int pos[3], bool dualMesh) const
|
||||
{
|
||||
if ( (pos[0]<0) || (pos[1]<0) || (pos[2]<0) )
|
||||
|
@ -1338,6 +1346,7 @@ bool Operator::Calc_LumpedElements()
|
|||
EC_C[ny][ipos] = epsilon * GetEdgeArea(ny,pos)/GetEdgeLength(ny,pos);
|
||||
if (R>0)
|
||||
EC_G[ny][ipos] = kappa * GetEdgeArea(ny,pos)/GetEdgeLength(ny,pos);
|
||||
|
||||
if (R==0) //make lumped element a PEC if resistance is zero
|
||||
{
|
||||
SetVV(ny,pos[0],pos[1],pos[2], 0 );
|
||||
|
|
|
@ -111,6 +111,9 @@ public:
|
|||
//! Get the length of an FDTD edge (unit is meter).
|
||||
virtual double GetEdgeLength(int ny, const unsigned int pos[3], bool dualMesh = false) const;
|
||||
|
||||
//! Get the volume of an FDTD cell
|
||||
virtual double GetCellVolume(const unsigned int pos[3], bool dualMesh = false) const;
|
||||
|
||||
//! Get the area around an edge for a given direction \a n and a given mesh posisition \a pos
|
||||
/*!
|
||||
This will return the area around an edge with a given direction, measured at the middle of the edge.
|
||||
|
|
|
@ -176,6 +176,11 @@ double Operator_Cylinder::GetEdgeLength(int ny, const unsigned int pos[3], bool
|
|||
return length * GetDiscLine(0,pos[0],dualMesh);
|
||||
}
|
||||
|
||||
double Operator_Cylinder::GetCellVolume(const unsigned int pos[3], bool dualMesh) const
|
||||
{
|
||||
return GetEdgeArea(2,pos,dualMesh)*GetEdgeLength(2,pos,dualMesh);
|
||||
}
|
||||
|
||||
double Operator_Cylinder::GetEdgeArea(int ny, const unsigned int pos[3], bool dualMesh) const
|
||||
{
|
||||
if (ny!=0)
|
||||
|
|
|
@ -58,6 +58,9 @@ public:
|
|||
//! Get the length of an FDTD edge, including radius corrected alpha-mesh width.
|
||||
virtual double GetEdgeLength(int ny, const unsigned int pos[3], bool dualMesh = false) const;
|
||||
|
||||
//! Get the volume of an FDTD cell
|
||||
virtual double GetCellVolume(const unsigned int pos[3], bool dualMesh = false) const;
|
||||
|
||||
//! Get the area around an edge for a given direction \a n and a given mesh posisition \a pos
|
||||
/*!
|
||||
This will return the area around an edge with a given direction, measured at the middle of the edge.
|
||||
|
|
Loading…
Reference in New Issue