rewritten SAR calculation

pull/1/head
Thorsten Liebig 2012-04-27 16:31:36 +02:00
parent c2abe89440
commit f62da05c12
8 changed files with 182 additions and 56 deletions

View File

@ -69,6 +69,9 @@ public:
*/ */
virtual double GetEdgeArea(int ny, const unsigned int pos[3], bool dualMesh = false) const =0; virtual double GetEdgeArea(int ny, const unsigned int pos[3], bool dualMesh = false) const =0;
//! Get the volume of an FDTD cell
virtual double GetCellVolume(const unsigned int pos[3], bool dualMesh = false) const =0;
//! Snap the given coodinates to mesh indices, return box dimension //! Snap the given coodinates to mesh indices, return box dimension
virtual bool SnapToMesh(const double* coord, unsigned int* uicoord, bool dualMesh=false, bool* inside=NULL) const =0; virtual bool SnapToMesh(const double* coord, unsigned int* uicoord, bool dualMesh=false, bool* inside=NULL) const =0;

View File

@ -241,7 +241,6 @@ FDTD_FLOAT**** ProcessFields::CalcField()
switch (m_DumpType) switch (m_DumpType)
{ {
case E_FIELD_DUMP: case E_FIELD_DUMP:
case SAR_LOCAL_DUMP:
for (unsigned int i=0; i<numLines[0]; ++i) for (unsigned int i=0; i<numLines[0]; ++i)
{ {
pos[0]=posLines[0][i]; pos[0]=posLines[0][i];
@ -317,8 +316,9 @@ FDTD_FLOAT**** ProcessFields::CalcField()
} }
} }
return field; return field;
default:
cerr << "ProcessFields::CalcField(): Error, unknown dump type..." << endl;
return field;
} }
cerr << "ProcessFields::CalcField(): Error, unknown dump type..." << endl;
return field;
} }

View File

@ -26,6 +26,25 @@ ProcessFieldsSAR::ProcessFieldsSAR(Engine_Interface_Base* eng_if) : ProcessField
ProcessFieldsSAR::~ProcessFieldsSAR() ProcessFieldsSAR::~ProcessFieldsSAR()
{ {
for (size_t n = 0; n<m_FD_Fields.size(); ++n)
{
Delete_N_3DArray(m_E_FD_Fields.at(n),numLines);
Delete_N_3DArray(m_J_FD_Fields.at(n),numLines);
}
m_E_FD_Fields.clear();
m_J_FD_Fields.clear();
}
void ProcessFieldsSAR::SetSubSampling(unsigned int subSampleRate, int dir)
{
cerr << "ProcessFieldsSAR::SetSubSampling: Warning: Defining a sub-sampling for SAR calculation is not recommended!!! Expect false results!" << endl;
ProcessFieldsFD::SetSubSampling(subSampleRate,dir);
}
void ProcessFieldsSAR::SetOptResolution(double optRes, int dir)
{
cerr << "ProcessFieldsSAR::SetOptResolution: Warning: Defining a sub-sampling for SAR calculation is not recommended!!! Expect false results!" << endl;
ProcessFieldsFD::SetOptResolution(optRes,dir);
} }
void ProcessFieldsSAR::InitProcess() void ProcessFieldsSAR::InitProcess()
@ -36,71 +55,143 @@ void ProcessFieldsSAR::InitProcess()
cerr << "ProcessFieldsSAR::InitProcess(): Error, wrong dump type... this should not happen... skipping!" << endl; cerr << "ProcessFieldsSAR::InitProcess(): Error, wrong dump type... this should not happen... skipping!" << endl;
return; return;
} }
if (m_Eng_Interface->GetInterpolationType()!=Engine_Interface_Base::NODE_INTERPOLATE) if (m_Eng_Interface->GetInterpolationType()!=Engine_Interface_Base::CELL_INTERPOLATE)
{ {
cerr << "ProcessFieldsSAR::InitProcess(): Warning, interpolation type is not supported, resetting to NODE!" << endl; cerr << "ProcessFieldsSAR::InitProcess(): Warning, interpolation type is not supported, resetting to CELL!" << endl;
SetDumpMode2Node(); SetDumpMode2Cell();
} }
ProcessFieldsFD::InitProcess(); ProcessFieldsFD::InitProcess();
}
double ProcessFieldsSAR::GetKappaDensityRatio(const unsigned int* pos) if (Enabled==false) return;
{
double coord[3] = {discLines[0][pos[0]],discLines[1][pos[1]],discLines[2][pos[2]]};
unsigned int OpPos[] = {posLines[0][pos[0]],posLines[1][pos[1]],posLines[2][pos[2]]};
ContinuousStructure* CSX = Op->GetGeometryCSX();
CSProperties* prop = CSX->GetPropertyByCoordPriority(coord,CSProperties::MATERIAL);
if (prop==0)
return 0.0;
CSPropMaterial* matProp = dynamic_cast<CSPropMaterial*>(prop);
double density = matProp->GetDensityWeighted(coord);
if (density==0)
return 0.0;
double kappa = 0;
double max_kappa = 0;
for (int n=0;n<3;++n)
{
kappa = Op->GetDiscMaterial(1,n,OpPos);
if (kappa>max_kappa)
max_kappa = kappa;
if (OpPos[n]>0)
{
--OpPos[n];
kappa = Op->GetDiscMaterial(1,n,OpPos);
if (kappa>max_kappa)
max_kappa = kappa;
++OpPos[n];
}
}
return max_kappa/density;
}
void ProcessFieldsSAR::DumpFDData()
{
unsigned int pos[3];
FDTD_FLOAT*** SAR = Create3DArray<float>(numLines);
std::complex<float>**** field_fd = NULL;
double kdRatio = 0;
//create data structures...
for (size_t n = 0; n<m_FD_Samples.size(); ++n) for (size_t n = 0; n<m_FD_Samples.size(); ++n)
{ {
field_fd = m_FD_Fields.at(n); m_E_FD_Fields.push_back(Create_N_3DArray<std::complex<float> >(numLines));
m_J_FD_Fields.push_back(Create_N_3DArray<std::complex<float> >(numLines));
}
}
int ProcessFieldsSAR::Process()
{
if (Enabled==false) return -1;
if (CheckTimestep()==false) return GetNextInterval();
if ((m_FD_Interval==0) || (m_Eng_Interface->GetNumberOfTimesteps()%m_FD_Interval!=0))
return GetNextInterval();
std::complex<float>**** field_fd = NULL;
unsigned int pos[3];
double T;
FDTD_FLOAT**** field_td=NULL;
// calc E-field
m_DumpType = E_FIELD_DUMP;
field_td = CalcField();
T = m_Eng_Interface->GetTime(m_dualTime);
for (size_t n = 0; n<m_FD_Samples.size(); ++n)
{
std::complex<float> exp_jwt_2_dt = std::exp( (std::complex<float>)(-2.0 * _I * M_PI * m_FD_Samples.at(n) * T) );
exp_jwt_2_dt *= 2; // *2 for single-sided spectrum
exp_jwt_2_dt *= Op->GetTimestep() * m_FD_Interval; // multiply with timestep-interval
field_fd = m_E_FD_Fields.at(n);
for (pos[0]=0; pos[0]<numLines[0]; ++pos[0]) for (pos[0]=0; pos[0]<numLines[0]; ++pos[0])
{ {
for (pos[1]=0; pos[1]<numLines[1]; ++pos[1]) for (pos[1]=0; pos[1]<numLines[1]; ++pos[1])
{ {
for (pos[2]=0; pos[2]<numLines[2]; ++pos[2]) for (pos[2]=0; pos[2]<numLines[2]; ++pos[2])
{ {
kdRatio = GetKappaDensityRatio(pos); field_fd[0][pos[0]][pos[1]][pos[2]] += field_td[0][pos[0]][pos[1]][pos[2]] * exp_jwt_2_dt;
SAR[pos[0]][pos[1]][pos[2]] = kdRatio*pow(abs(field_fd[0][pos[0]][pos[1]][pos[2]]) , 2); field_fd[1][pos[0]][pos[1]][pos[2]] += field_td[1][pos[0]][pos[1]][pos[2]] * exp_jwt_2_dt;
SAR[pos[0]][pos[1]][pos[2]] = kdRatio*pow(abs(field_fd[1][pos[0]][pos[1]][pos[2]]) , 2); field_fd[2][pos[0]][pos[1]][pos[2]] += field_td[2][pos[0]][pos[1]][pos[2]] * exp_jwt_2_dt;
SAR[pos[0]][pos[1]][pos[2]] = kdRatio*pow(abs(field_fd[2][pos[0]][pos[1]][pos[2]]) , 2); }
}
}
}
Delete_N_3DArray<FDTD_FLOAT>(field_td,numLines);
// calc J-field
m_DumpType = J_FIELD_DUMP;
field_td = CalcField();
T = m_Eng_Interface->GetTime(m_dualTime);
for (size_t n = 0; n<m_FD_Samples.size(); ++n)
{
std::complex<float> exp_jwt_2_dt = std::exp( (std::complex<float>)(-2.0 * _I * M_PI * m_FD_Samples.at(n) * T) );
exp_jwt_2_dt *= 2; // *2 for single-sided spectrum
exp_jwt_2_dt *= Op->GetTimestep() * m_FD_Interval; // multiply with timestep-interval
field_fd = m_J_FD_Fields.at(n);
for (pos[0]=0; pos[0]<numLines[0]; ++pos[0])
{
for (pos[1]=0; pos[1]<numLines[1]; ++pos[1])
{
for (pos[2]=0; pos[2]<numLines[2]; ++pos[2])
{
field_fd[0][pos[0]][pos[1]][pos[2]] += field_td[0][pos[0]][pos[1]][pos[2]] * exp_jwt_2_dt;
field_fd[1][pos[0]][pos[1]][pos[2]] += field_td[1][pos[0]][pos[1]][pos[2]] * exp_jwt_2_dt;
field_fd[2][pos[0]][pos[1]][pos[2]] += field_td[2][pos[0]][pos[1]][pos[2]] * exp_jwt_2_dt;
}
}
}
}
Delete_N_3DArray<FDTD_FLOAT>(field_td,numLines);
//reset dump type
m_DumpType = SAR_LOCAL_DUMP;
++m_FD_SampleCount;
return GetNextInterval();
}
void ProcessFieldsSAR::DumpFDData()
{
unsigned int pos[3];
unsigned int orig_pos[3];
FDTD_FLOAT*** SAR = Create3DArray<float>(numLines);
std::complex<float>**** E_field_fd = NULL;
std::complex<float>**** J_field_fd = NULL;
double coord[3];
double density;
ContinuousStructure* CSX = Op->GetGeometryCSX();
CSProperties* prop = NULL;
CSPropMaterial* matProp = NULL;
double power;
for (size_t n = 0; n<m_FD_Samples.size(); ++n)
{
E_field_fd = m_E_FD_Fields.at(n);
J_field_fd = m_J_FD_Fields.at(n);
power = 0;
for (pos[0]=0; pos[0]<numLines[0]; ++pos[0])
{
orig_pos[0] = posLines[0][pos[0]];
coord[0] = Op->GetDiscLine(0,orig_pos[0],true);
for (pos[1]=0; pos[1]<numLines[1]; ++pos[1])
{
orig_pos[1] = posLines[1][pos[1]];
coord[1] = Op->GetDiscLine(1,orig_pos[1],true);
for (pos[2]=0; pos[2]<numLines[2]; ++pos[2])
{
orig_pos[2] = posLines[2][pos[2]];
coord[2] = Op->GetDiscLine(2,orig_pos[2],true);
prop = CSX->GetPropertyByCoordPriority(coord,CSProperties::MATERIAL);
SAR[pos[0]][pos[1]][pos[2]] = 0.0;
density=0.0;
if (prop!=0)
{
matProp = dynamic_cast<CSPropMaterial*>(prop);
density = matProp->GetDensityWeighted(coord);
if (density>0)
{
SAR[pos[0]][pos[1]][pos[2]] = abs(E_field_fd[0][pos[0]][pos[1]][pos[2]]) * abs(J_field_fd[0][pos[0]][pos[1]][pos[2]]);
SAR[pos[0]][pos[1]][pos[2]] += abs(E_field_fd[1][pos[0]][pos[1]][pos[2]]) * abs(J_field_fd[1][pos[0]][pos[1]][pos[2]]);
SAR[pos[0]][pos[1]][pos[2]] += abs(E_field_fd[2][pos[0]][pos[1]][pos[2]]) * abs(J_field_fd[2][pos[0]][pos[1]][pos[2]]);
SAR[pos[0]][pos[1]][pos[2]] *= 0.5/density;
}
else
density=0.0;
}
power+=SAR[pos[0]][pos[1]][pos[2]]*Op->GetCellVolume(orig_pos)*density;
} }
} }
} }
@ -126,6 +217,9 @@ void ProcessFieldsSAR::DumpFDData()
float freq[1]={m_FD_Samples.at(n)}; float freq[1]={m_FD_Samples.at(n)};
if (m_HDF5_Dump_File->WriteAtrribute("/FieldData/FD/"+ss.str(),"frequency",freq,1)==false) if (m_HDF5_Dump_File->WriteAtrribute("/FieldData/FD/"+ss.str(),"frequency",freq,1)==false)
cerr << "ProcessFieldsSAR::Process: can't dump to file...! " << endl; cerr << "ProcessFieldsSAR::Process: can't dump to file...! " << endl;
float pow[1]={power};
if (m_HDF5_Dump_File->WriteAtrribute("/FieldData/FD/"+ss.str(),"power",pow,1)==false)
cerr << "ProcessFieldsSAR::Process: can't dump to file...! " << endl;
} }
else else
cerr << "ProcessFieldsSAR::Process: unknown File-Type" << endl; cerr << "ProcessFieldsSAR::Process: unknown File-Type" << endl;

View File

@ -30,10 +30,19 @@ public:
virtual void InitProcess(); virtual void InitProcess();
virtual int Process();
virtual void SetSubSampling(unsigned int subSampleRate, int dir=-1);
virtual void SetOptResolution(double optRes, int dir=-1);
protected: protected:
virtual void DumpFDData(); virtual void DumpFDData();
double GetKappaDensityRatio(const unsigned int* pos); //! frequency domain electric field storage
vector<std::complex<float>****> m_E_FD_Fields;
//! frequency domain current density storage
vector<std::complex<float>****> m_J_FD_Fields;
}; };
#endif // PROCESSFIELDS_SAR_H #endif // PROCESSFIELDS_SAR_H

View File

@ -181,6 +181,14 @@ double Operator::GetEdgeLength(int n, const unsigned int* pos, bool dualMesh) co
} }
} }
double Operator::GetCellVolume(const unsigned int pos[3], bool dualMesh) const
{
double vol=1;
for (int n=0;n<3;++n)
vol*=GetEdgeLength(n,pos,dualMesh);
return vol;
}
double Operator::GetNodeWidth(int ny, const int pos[3], bool dualMesh) const double Operator::GetNodeWidth(int ny, const int pos[3], bool dualMesh) const
{ {
if ( (pos[0]<0) || (pos[1]<0) || (pos[2]<0) ) if ( (pos[0]<0) || (pos[1]<0) || (pos[2]<0) )
@ -1338,6 +1346,7 @@ bool Operator::Calc_LumpedElements()
EC_C[ny][ipos] = epsilon * GetEdgeArea(ny,pos)/GetEdgeLength(ny,pos); EC_C[ny][ipos] = epsilon * GetEdgeArea(ny,pos)/GetEdgeLength(ny,pos);
if (R>0) if (R>0)
EC_G[ny][ipos] = kappa * GetEdgeArea(ny,pos)/GetEdgeLength(ny,pos); EC_G[ny][ipos] = kappa * GetEdgeArea(ny,pos)/GetEdgeLength(ny,pos);
if (R==0) //make lumped element a PEC if resistance is zero if (R==0) //make lumped element a PEC if resistance is zero
{ {
SetVV(ny,pos[0],pos[1],pos[2], 0 ); SetVV(ny,pos[0],pos[1],pos[2], 0 );

View File

@ -111,6 +111,9 @@ public:
//! Get the length of an FDTD edge (unit is meter). //! Get the length of an FDTD edge (unit is meter).
virtual double GetEdgeLength(int ny, const unsigned int pos[3], bool dualMesh = false) const; virtual double GetEdgeLength(int ny, const unsigned int pos[3], bool dualMesh = false) const;
//! Get the volume of an FDTD cell
virtual double GetCellVolume(const unsigned int pos[3], bool dualMesh = false) const;
//! Get the area around an edge for a given direction \a n and a given mesh posisition \a pos //! Get the area around an edge for a given direction \a n and a given mesh posisition \a pos
/*! /*!
This will return the area around an edge with a given direction, measured at the middle of the edge. This will return the area around an edge with a given direction, measured at the middle of the edge.

View File

@ -176,6 +176,11 @@ double Operator_Cylinder::GetEdgeLength(int ny, const unsigned int pos[3], bool
return length * GetDiscLine(0,pos[0],dualMesh); return length * GetDiscLine(0,pos[0],dualMesh);
} }
double Operator_Cylinder::GetCellVolume(const unsigned int pos[3], bool dualMesh) const
{
return GetEdgeArea(2,pos,dualMesh)*GetEdgeLength(2,pos,dualMesh);
}
double Operator_Cylinder::GetEdgeArea(int ny, const unsigned int pos[3], bool dualMesh) const double Operator_Cylinder::GetEdgeArea(int ny, const unsigned int pos[3], bool dualMesh) const
{ {
if (ny!=0) if (ny!=0)

View File

@ -58,6 +58,9 @@ public:
//! Get the length of an FDTD edge, including radius corrected alpha-mesh width. //! Get the length of an FDTD edge, including radius corrected alpha-mesh width.
virtual double GetEdgeLength(int ny, const unsigned int pos[3], bool dualMesh = false) const; virtual double GetEdgeLength(int ny, const unsigned int pos[3], bool dualMesh = false) const;
//! Get the volume of an FDTD cell
virtual double GetCellVolume(const unsigned int pos[3], bool dualMesh = false) const;
//! Get the area around an edge for a given direction \a n and a given mesh posisition \a pos //! Get the area around an edge for a given direction \a n and a given mesh posisition \a pos
/*! /*!
This will return the area around an edge with a given direction, measured at the middle of the edge. This will return the area around an edge with a given direction, measured at the middle of the edge.