Merge branch 'python'
|
@ -12,7 +12,6 @@ Makefile*
|
|||
*.pro.user*
|
||||
*.user
|
||||
*.orig
|
||||
openEMS
|
||||
localPaths.pri
|
||||
.directory
|
||||
|
||||
|
@ -22,3 +21,11 @@ CMakeCache.txt
|
|||
cmake_install.cmake
|
||||
install_manifest.txt
|
||||
localConfig.cmake
|
||||
|
||||
#python
|
||||
*.pyc
|
||||
*.pyo
|
||||
python/**/*.cpp
|
||||
!python/doc
|
||||
python/doc/_build
|
||||
python/doc/Tutorials/__*
|
||||
|
|
|
@ -0,0 +1,14 @@
|
|||
# openEMS python interface
|
||||
|
||||
## Install
|
||||
* Simple version:
|
||||
```python
|
||||
python setup.py install
|
||||
```
|
||||
|
||||
* Extended options, e.g. for custom install path at */opt/openEMS*:
|
||||
```python
|
||||
python setup.py build_ext -I/opt/openEMS/include -L/opt/openEMS/lib -R/opt/openEMS/lib"
|
||||
pyhton setup.py install
|
||||
```
|
||||
**Note:** The install command may require root on Linux, or add --user to install to ~/.local
|
|
@ -0,0 +1,198 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Bent Patch Antenna Tutorial
|
||||
|
||||
Tested with
|
||||
- python 3.4
|
||||
- openEMS v0.0.33+
|
||||
|
||||
(C) 2016 Thorsten Liebig <thorsten.liebig@gmx.de>
|
||||
|
||||
"""
|
||||
|
||||
### Import Libraries
|
||||
import os, tempfile
|
||||
from pylab import *
|
||||
from mpl_toolkits.mplot3d import Axes3D
|
||||
|
||||
from CSXCAD import CSXCAD
|
||||
|
||||
from openEMS.openEMS import openEMS
|
||||
from openEMS.physical_constants import *
|
||||
|
||||
|
||||
### Setup the simulation
|
||||
Sim_Path = os.path.join(tempfile.gettempdir(), 'Bent_Patch')
|
||||
|
||||
post_proc_only = False
|
||||
|
||||
unit = 1e-3 # all length in mm
|
||||
|
||||
f0 = 2.4e9 # center frequency, frequency of interest!
|
||||
lambda0 = round(C0/f0/unit) # wavelength in mm
|
||||
fc = 0.5e9 # 20 dB corner frequency
|
||||
|
||||
# patch width in alpha-direction
|
||||
patch_width = 32 # resonant length in alpha-direction
|
||||
patch_radius = 50 # radius
|
||||
patch_length = 40 # patch length in z-direction
|
||||
|
||||
#substrate setup
|
||||
substrate_epsR = 3.38
|
||||
substrate_kappa = 1e-3 * 2*pi*2.45e9 * EPS0*substrate_epsR
|
||||
substrate_width = 80
|
||||
substrate_length = 90
|
||||
substrate_thickness = 1.524
|
||||
substrate_cells = 4
|
||||
|
||||
#setup feeding
|
||||
feed_pos = -5.5 #feeding position in x-direction
|
||||
feed_width = 2 #feeding port width
|
||||
feed_R = 50 #feed resistance
|
||||
|
||||
# size of the simulation box
|
||||
SimBox_rad = 2*100
|
||||
SimBox_height = 1.5*200
|
||||
|
||||
### Setup FDTD parameter & excitation function
|
||||
FDTD = openEMS(CoordSystem=1) # init a cylindrical FDTD
|
||||
f0 = 2e9 # center frequency
|
||||
fc = 1e9 # 20 dB corner frequency
|
||||
FDTD.SetGaussExcite(f0, fc)
|
||||
FDTD.SetBoundaryCond(['MUR', 'MUR', 'MUR', 'MUR', 'MUR', 'MUR']) # boundary conditions
|
||||
|
||||
### Setup the Geometry & Mesh
|
||||
# init a cylindrical mesh
|
||||
CSX = CSXCAD.ContinuousStructure(CoordSystem=1)
|
||||
FDTD.SetCSX(CSX)
|
||||
mesh = CSX.GetGrid()
|
||||
mesh.SetDeltaUnit(unit)
|
||||
|
||||
### Setup the geometry using cylindrical coordinates
|
||||
# calculate some width as an angle in radiant
|
||||
patch_ang_width = patch_width/(patch_radius+substrate_thickness)
|
||||
substr_ang_width = substrate_width/patch_radius
|
||||
feed_angle = feed_pos/patch_radius
|
||||
|
||||
# create patch
|
||||
patch = CSX.AddMetal('patch') # create a perfect electric conductor (PEC)
|
||||
start = [patch_radius+substrate_thickness, -patch_ang_width/2, -patch_length/2 ]
|
||||
stop = [patch_radius+substrate_thickness, patch_ang_width/2, patch_length/2 ]
|
||||
CSX.AddBox(patch, priority=10, start=start, stop=stop, edges2grid='all') # add a box-primitive to the metal property 'patch'
|
||||
|
||||
# create substrate
|
||||
substrate = CSX.AddMaterial('substrate', epsilon=substrate_epsR, kappa=substrate_kappa )
|
||||
start = [patch_radius , -substr_ang_width/2, -substrate_length/2]
|
||||
stop = [patch_radius+substrate_thickness, substr_ang_width/2, substrate_length/2]
|
||||
substrate.AddBox(start=start, stop=stop, edges2grid='all')
|
||||
|
||||
# save current density oon the patch
|
||||
jt_patch = CSX.AddDump('Jt_patch', dump_type=3, file_type=1)
|
||||
start = [patch_radius+substrate_thickness, -substr_ang_width/2, -substrate_length/2]
|
||||
stop = [patch_radius+substrate_thickness, +substr_ang_width/2, substrate_length/2]
|
||||
jt_patch.AddBox(start=start, stop=stop)
|
||||
|
||||
# create ground
|
||||
gnd = CSX.AddMetal('gnd') # create a perfect electric conductor (PEC)
|
||||
start = [patch_radius, -substr_ang_width/2, -substrate_length/2]
|
||||
stop = [patch_radius, +substr_ang_width/2, +substrate_length/2]
|
||||
gnd.AddBox(priority=10, start=start, stop=stop, edges2grid='all')
|
||||
|
||||
# apply the excitation & resist as a current source
|
||||
start = [patch_radius , feed_angle, 0]
|
||||
stop = [patch_radius+substrate_thickness, feed_angle, 0]
|
||||
port = FDTD.AddLumpedPort(1 ,feed_R, start, stop, 'r', 1.0, priority=50, edges2grid='all')
|
||||
|
||||
### Finalize the Mesh
|
||||
# add the simulation domain size
|
||||
mesh.AddLine('r', patch_radius+np.array([-20, SimBox_rad]))
|
||||
mesh.AddLine('a', [-0.75*pi, 0.75*pi])
|
||||
mesh.AddLine('z', [-SimBox_height/2, SimBox_height/2])
|
||||
|
||||
# add some lines for the substrate
|
||||
mesh.AddLine('r', patch_radius+np.linspace(0,substrate_thickness,substrate_cells))
|
||||
|
||||
# generate a smooth mesh with max. cell size: lambda_min / 20
|
||||
max_res = C0 / (f0+fc) / unit / 20
|
||||
max_ang = max_res/(SimBox_rad+patch_radius) # max res in radiant
|
||||
mesh.SmoothMeshLines(0, max_res, 1.4)
|
||||
mesh.SmoothMeshLines(1, max_ang, 1.4)
|
||||
mesh.SmoothMeshLines(2, max_res, 1.4)
|
||||
|
||||
## Add the nf2ff recording box
|
||||
nf2ff = FDTD.CreateNF2FFBox()
|
||||
|
||||
### Run the simulation
|
||||
if 0: # debugging only
|
||||
CSX_file = os.path.join(Sim_Path, 'bent_patch.xml')
|
||||
if not os.path.exists(Sim_Path):
|
||||
os.mkdir(Sim_Path)
|
||||
CSX.Write2XML(CSX_file)
|
||||
os.system(r'AppCSXCAD "{}"'.format(CSX_file))
|
||||
|
||||
|
||||
if not post_proc_only:
|
||||
FDTD.Run(Sim_Path, verbose=3, cleanup=True)
|
||||
|
||||
### Postprocessing & plotting
|
||||
f = np.linspace(max(1e9,f0-fc),f0+fc,401)
|
||||
port.CalcPort(Sim_Path, f)
|
||||
Zin = port.uf_tot / port.if_tot
|
||||
s11 = port.uf_ref/port.uf_inc
|
||||
s11_dB = 20.0*np.log10(np.abs(s11))
|
||||
|
||||
figure()
|
||||
plot(f/1e9, s11_dB)
|
||||
grid()
|
||||
ylabel('s11 (dB)')
|
||||
xlabel('frequency (GHz)')
|
||||
|
||||
P_in = 0.5*np.real(port.uf_tot * np.conj(port.if_tot)) # antenna feed power
|
||||
|
||||
# plot feed point impedance
|
||||
figure()
|
||||
plot( f/1e6, real(Zin), 'k-', linewidth=2, label=r'$\Re(Z_{in})$' )
|
||||
grid()
|
||||
plot( f/1e6, imag(Zin), 'r--', linewidth=2, label=r'$\Im(Z_{in})$' )
|
||||
title( 'feed point impedance' )
|
||||
xlabel( 'frequency (MHz)' )
|
||||
ylabel( 'impedance ($\Omega$)' )
|
||||
legend( )
|
||||
|
||||
|
||||
idx = np.where((s11_dB<-10) & (s11_dB==np.min(s11_dB)))[0]
|
||||
if not len(idx)==1:
|
||||
print('No resonance frequency found for far-field calulation')
|
||||
else:
|
||||
f_res = f[idx[0]]
|
||||
theta = np.arange(-180.0, 180.0, 2.0)
|
||||
print("Calculate NF2FF")
|
||||
nf2ff_res_phi0 = nf2ff.CalcNF2FF(Sim_Path, f_res, theta, 0, center=np.array([patch_radius+substrate_thickness, 0, 0])*unit, read_cached=True, outfile='nf2ff_xz.h5')
|
||||
|
||||
figure(figsize=(15, 7))
|
||||
ax = subplot(121, polar=True)
|
||||
E_norm = 20.0*np.log10(nf2ff_res_phi0.E_norm/np.max(nf2ff_res_phi0.E_norm)) + nf2ff_res_phi0.Dmax
|
||||
ax.plot(np.deg2rad(theta), 10**(np.squeeze(E_norm)/20), linewidth=2, label='xz-plane')
|
||||
ax.grid(True)
|
||||
ax.set_xlabel('theta (deg)')
|
||||
ax.set_theta_zero_location('N')
|
||||
ax.set_theta_direction(-1)
|
||||
ax.legend(loc=3)
|
||||
|
||||
phi = theta
|
||||
nf2ff_res_theta90 = nf2ff.CalcNF2FF(Sim_Path, f_res, 90, phi, center=np.array([patch_radius+substrate_thickness, 0, 0])*unit, read_cached=True, outfile='nf2ff_xy.h5')
|
||||
|
||||
ax = subplot(122, polar=True)
|
||||
E_norm = 20.0*np.log10(nf2ff_res_theta90.E_norm/np.max(nf2ff_res_theta90.E_norm)) + nf2ff_res_theta90.Dmax
|
||||
ax.plot(np.deg2rad(phi), 10**(np.squeeze(E_norm)/20), linewidth=2, label='xy-plane')
|
||||
ax.grid(True)
|
||||
ax.set_xlabel('phi (deg)')
|
||||
suptitle('Bent Patch Anteanna Pattern\nFrequency: {} GHz'.format(f_res/1e9), fontsize=14)
|
||||
ax.legend(loc=3)
|
||||
|
||||
print( 'radiated power: Prad = {:.2e} Watt'.format(nf2ff_res_theta90.Prad[0]))
|
||||
print( 'directivity: Dmax = {:.1f} ({:.1f} dBi)'.format(nf2ff_res_theta90.Dmax[0], 10*np.log10(nf2ff_res_theta90.Dmax[0])))
|
||||
print( 'efficiency: nu_rad = {:.1f} %'.format(100*nf2ff_res_theta90.Prad[0]/real(P_in[idx[0]])))
|
||||
|
||||
show()
|
||||
|
|
@ -0,0 +1,239 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Tutorials / CRLH_Extraction
|
||||
|
||||
Describtion at:
|
||||
http://openems.de/index.php/Tutorial:_CRLH_Extraction
|
||||
|
||||
Tested with
|
||||
- python 3.4
|
||||
- openEMS v0.0.34+
|
||||
|
||||
(C) 2016 Thorsten Liebig <thorsten.liebig@gmx.de>
|
||||
"""
|
||||
|
||||
|
||||
### Import Libraries
|
||||
import os, tempfile
|
||||
from pylab import *
|
||||
|
||||
from CSXCAD import ContinuousStructure
|
||||
from openEMS import openEMS
|
||||
from openEMS.physical_constants import *
|
||||
|
||||
### Class to represent single CRLH unit cells
|
||||
class CRLH_Cells:
|
||||
def __init__(self, LL, LW, Top, Bot, GLT, GLB, SL, SW, VR):
|
||||
self.LL = LL # Line length
|
||||
self.LW = LW # Line width
|
||||
self.Top = Top # top signal height
|
||||
self.Bot = Bot # bottom signal height
|
||||
self.GLT = GLT # gap length top
|
||||
self.GLB = GLB # gap length bottom
|
||||
self.SL = SL # stub length
|
||||
self.SW = SW # stub width
|
||||
self.VR = VR # via radius
|
||||
self.props = dict() # property dictionary
|
||||
self.edge_resolution = None
|
||||
|
||||
def createProperties(self, CSX):
|
||||
for p in ['metal_top', 'metal_bot', 'via']:
|
||||
self.props[p] = CSX.AddMetal(p)
|
||||
|
||||
def setEdgeResolution(self, res):
|
||||
self.edge_resolution = res
|
||||
|
||||
def createCell(self, translate = [0,0,0]):
|
||||
def append_mesh(mesh1, mesh2):
|
||||
for n in range(3):
|
||||
if mesh1[n] is None:
|
||||
mesh1[n] = mesh2[n]
|
||||
elif mesh2[n] is None:
|
||||
continue
|
||||
else:
|
||||
mesh1[n] += mesh2[n]
|
||||
return mesh1
|
||||
translate = array(translate)
|
||||
start = [-self.LL/2 , -self.LW/2, self.Top] + translate
|
||||
stop = [-self.GLT/2, self.LW/2, self.Top] + translate
|
||||
box = self.props['metal_top'].AddBox(start, stop, priority=10)
|
||||
mesh = box.GetGridHint('x', metal_edge_res=self.edge_resolution, down_dir=False)
|
||||
append_mesh(mesh, box.GetGridHint('y', metal_edge_res=self.edge_resolution) )
|
||||
|
||||
start = [+self.LL/2 , -self.LW/2, self.Top] + translate
|
||||
stop = [+self.GLT/2, self.LW/2, self.Top] + translate
|
||||
box = self.props['metal_top'].AddBox(start, stop, priority=10)
|
||||
append_mesh(mesh, box.GetGridHint('x', metal_edge_res=self.edge_resolution, up_dir=False) )
|
||||
|
||||
start = [-(self.LL-self.GLB)/2, -self.LW/2, self.Bot] + translate
|
||||
stop = [+(self.LL-self.GLB)/2, self.LW/2, self.Bot] + translate
|
||||
box = self.props['metal_bot'].AddBox(start, stop, priority=10)
|
||||
append_mesh(mesh, box.GetGridHint('x', metal_edge_res=self.edge_resolution) )
|
||||
|
||||
start = [-self.SW/2, -self.LW/2-self.SL, self.Bot] + translate
|
||||
stop = [+self.SW/2, self.LW/2+self.SL, self.Bot] + translate
|
||||
box = self.props['metal_bot'].AddBox(start, stop, priority=10)
|
||||
append_mesh(mesh, box.GetGridHint('xy', metal_edge_res=self.edge_resolution) )
|
||||
|
||||
start = [0, -self.LW/2-self.SL+self.SW/2, 0 ] + translate
|
||||
stop = [0, -self.LW/2-self.SL+self.SW/2, self.Bot] + translate
|
||||
|
||||
self.props['via'].AddCylinder(start, stop, radius=self.VR, priority=10)
|
||||
|
||||
start[1] *= -1
|
||||
stop [1] *= -1
|
||||
self.props['via'].AddCylinder(start, stop, radius=self.VR, priority=10)
|
||||
|
||||
return mesh
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
### Setup the simulation
|
||||
Sim_Path = os.path.join(tempfile.gettempdir(), 'CRLH_Extraction')
|
||||
post_proc_only = False
|
||||
|
||||
unit = 1e-6 # specify everything in um
|
||||
|
||||
feed_length = 30000
|
||||
|
||||
substrate_thickness = [1524, 101 , 254 ]
|
||||
substrate_epsr = [3.48, 3.48, 3.48]
|
||||
|
||||
CRLH = CRLH_Cells(LL = 14e3, LW = 4e3, GLB = 1950, GLT = 4700, SL = 7800, SW = 1000, VR = 250 , \
|
||||
Top = sum(substrate_thickness), \
|
||||
Bot = sum(substrate_thickness[:-1]))
|
||||
|
||||
# frequency range of interest
|
||||
f_start = 0.8e9
|
||||
f_stop = 6e9
|
||||
|
||||
### Setup FDTD parameters & excitation function
|
||||
CSX = ContinuousStructure()
|
||||
FDTD = openEMS(EndCriteria=1e-5)
|
||||
FDTD.SetCSX(CSX)
|
||||
mesh = CSX.GetGrid()
|
||||
mesh.SetDeltaUnit(unit)
|
||||
|
||||
CRLH.createProperties(CSX)
|
||||
|
||||
FDTD.SetGaussExcite((f_start+f_stop)/2, (f_stop-f_start)/2 )
|
||||
BC = {'PML_8' 'PML_8' 'MUR' 'MUR' 'PEC' 'PML_8'}
|
||||
FDTD.SetBoundaryCond( ['PML_8', 'PML_8', 'MUR', 'MUR', 'PEC', 'PML_8'] )
|
||||
|
||||
### Setup a basic mesh and create the CRLH unit cell
|
||||
resolution = C0/(f_stop*sqrt(max(substrate_epsr)))/unit /30 # resolution of lambda/30
|
||||
CRLH.setEdgeResolution(resolution/4)
|
||||
|
||||
mesh.SetLines('x', [-feed_length-CRLH.LL/2, 0, feed_length+CRLH.LL/2])
|
||||
mesh.SetLines('y', [-30000, 0, 30000])
|
||||
|
||||
substratelines = cumsum(substrate_thickness)
|
||||
mesh.SetLines('z', [0, 20000])
|
||||
mesh.AddLine('z', cumsum(substrate_thickness))
|
||||
mesh.AddLine('z', linspace(substratelines[-2],substratelines[-1],4))
|
||||
|
||||
# create the CRLH unit cell (will define additional fixed mesh lines)
|
||||
mesh_hint = CRLH.createCell()
|
||||
mesh.AddLine('x', mesh_hint[0])
|
||||
mesh.AddLine('y', mesh_hint[1])
|
||||
|
||||
# Smooth the given mesh
|
||||
mesh.SmoothMeshLines('all', resolution, 1.2)
|
||||
|
||||
### Setup the substrate layer
|
||||
substratelines = [0] + substratelines.tolist()
|
||||
start, stop = mesh.GetSimArea()
|
||||
|
||||
for n in range(len(substrate_thickness)):
|
||||
sub = CSX.AddMaterial( 'substrate_{}'.format(n), epsilon=substrate_epsr[n] )
|
||||
start[2] = substratelines[n]
|
||||
stop [2] = substratelines[n+1]
|
||||
|
||||
sub.AddBox( start, stop )
|
||||
|
||||
### Add the feeding MSL ports
|
||||
pec = CSX.AddMetal( 'PEC' )
|
||||
port = [None, None]
|
||||
x_lines = mesh.GetLines('x')
|
||||
portstart = [ x_lines[0], -CRLH.LW/2, substratelines[-1]]
|
||||
portstop = [ -CRLH.LL/2, CRLH.LW/2, 0]
|
||||
port[0] = FDTD.AddMSLPort( 1, pec, portstart, portstop, 'x', 'z', excite=-1, FeedShift=10*resolution, MeasPlaneShift=feed_length/2, priority=10)
|
||||
|
||||
|
||||
portstart = [ x_lines[-1], -CRLH.LW/2, substratelines[-1]]
|
||||
portstop = [ +CRLH.LL/2 , CRLH.LW/2, 0]
|
||||
port[1] = FDTD.AddMSLPort( 2, pec, portstart, portstop, 'x', 'z', MeasPlaneShift=feed_length/2, priority=10)
|
||||
|
||||
### Run the simulation
|
||||
if 1: # debugging only
|
||||
CSX_file = os.path.join(Sim_Path, 'CRLH_Extraction.xml')
|
||||
if not os.path.exists(Sim_Path):
|
||||
os.mkdir(Sim_Path)
|
||||
CSX.Write2XML(CSX_file)
|
||||
os.system(r'AppCSXCAD "{}"'.format(CSX_file))
|
||||
|
||||
if not post_proc_only:
|
||||
FDTD.Run(Sim_Path, verbose=3, cleanup=True)
|
||||
|
||||
### Post-Processing
|
||||
f = linspace( f_start, f_stop, 1601 )
|
||||
for p in port:
|
||||
p.CalcPort( Sim_Path, f, ref_impedance = 50, ref_plane_shift = feed_length)
|
||||
|
||||
# calculate and plot scattering parameter
|
||||
s11 = port[0].uf_ref / port[0].uf_inc
|
||||
s21 = port[1].uf_ref / port[0].uf_inc
|
||||
|
||||
plot(f/1e9,20*log10(abs(s11)),'k-' , linewidth=2, label='$S_{11}$')
|
||||
plot(f/1e9,20*log10(abs(s21)),'r--', linewidth=2, label='$S_{21}$')
|
||||
grid()
|
||||
legend(loc=3)
|
||||
ylabel('S-Parameter (dB)')
|
||||
xlabel('frequency (GHz)')
|
||||
ylim([-40, 2])
|
||||
|
||||
### Extract CRLH parameter form ABCD matrix
|
||||
A = ((1+s11)*(1-s11) + s21*s21)/(2*s21)
|
||||
C = ((1-s11)*(1-s11) - s21*s21)/(2*s21) / port[1].Z_ref
|
||||
|
||||
Y = C
|
||||
Z = 2*(A-1)/C
|
||||
|
||||
iZ = imag(Z)
|
||||
iY = imag(Y)
|
||||
|
||||
fse = interp(0, iZ, f)
|
||||
fsh = interp(0, iY, f)
|
||||
|
||||
df = f[1]-f[0]
|
||||
fse_idx = np.where(f>fse)[0][0]
|
||||
fsh_idx = np.where(f>fsh)[0][0]
|
||||
|
||||
LR = 0.5*(iZ[fse_idx]-iZ[fse_idx-1])/(2*pi*df)
|
||||
CL = 1/(2*pi*fse)**2/LR
|
||||
|
||||
CR = 0.5*(iY[fsh_idx]-iY[fsh_idx-1])/(2*pi*df)
|
||||
LL = 1/(2*pi*fsh)**2/CR
|
||||
|
||||
print(' Series tank: CL = {:.2f} pF, LR = {:.2f} nH -> f_se = {:.2f} GHz '.format(CL*1e12, LR*1e9, fse*1e-9))
|
||||
print(' Shunt tank: CR = {:.2f} pF, LL = {:.2f} nH -> f_sh = {:.2f} GHz '.format(CR*1e12, LL*1e9, fsh*1e-9))
|
||||
|
||||
### Calculate analytical wave-number of an inf-array of cells
|
||||
w = 2*pi*f
|
||||
wse = 2*pi*fse
|
||||
wsh = 2*pi*fsh
|
||||
beta_calc = real(arccos(1-(w**2-wse**2)*(w**2-wsh**2)/(2*w**2/CR/LR)))
|
||||
|
||||
# plot
|
||||
figure()
|
||||
beta = -angle(s21)/CRLH.LL/unit
|
||||
plot(abs(beta)*CRLH.LL*unit/pi,f*1e-9,'k-', linewidth=2, label=r'$\beta_{CRLH,\ 1\ cell}$' )
|
||||
grid()
|
||||
plot(beta_calc/pi,f*1e-9,'c--', linewidth=2, label=r'$\beta_{CRLH,\ \infty\ cells}$')
|
||||
plot(real(port[1].beta)*CRLH.LL*unit/pi,f*1e-9,'g-', linewidth=2, label=r'$\beta_{MSL}$')
|
||||
ylim([1, 6])
|
||||
xlabel(r'$|\beta| p / \pi$')
|
||||
ylabel('frequency (GHz)')
|
||||
legend(loc=2)
|
||||
|
||||
show()
|
|
@ -0,0 +1,191 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Helical Antenna Tutorial
|
||||
|
||||
Tested with
|
||||
- python 3.4
|
||||
- openEMS v0.0.33+
|
||||
|
||||
(C) 2015-2016 Thorsten Liebig <thorsten.liebig@gmx.de>
|
||||
|
||||
"""
|
||||
|
||||
### Import Libraries
|
||||
import os, tempfile
|
||||
from pylab import *
|
||||
|
||||
from CSXCAD import CSXCAD
|
||||
|
||||
from openEMS import openEMS
|
||||
from openEMS.physical_constants import *
|
||||
|
||||
|
||||
### Setup the simulation
|
||||
Sim_Path = os.path.join(tempfile.gettempdir(), 'Helical_Ant')
|
||||
post_proc_only = False
|
||||
|
||||
unit = 1e-3 # all length in mm
|
||||
|
||||
f0 = 2.4e9 # center frequency, frequency of interest!
|
||||
lambda0 = round(C0/f0/unit) # wavelength in mm
|
||||
fc = 0.5e9 # 20 dB corner frequency
|
||||
|
||||
Helix_radius = 20 # --> diameter is ~ lambda/pi
|
||||
Helix_turns = 10 # --> expected gain is G ~ 4 * 10 = 40 (16dBi)
|
||||
Helix_pitch = 30 # --> pitch is ~ lambda/4
|
||||
Helix_mesh_res = 3
|
||||
|
||||
gnd_radius = lambda0/2
|
||||
|
||||
# feeding
|
||||
feed_heigth = 3
|
||||
feed_R = 120 #feed impedance
|
||||
|
||||
# size of the simulation box
|
||||
SimBox = array([1, 1, 1.5])*2.0*lambda0
|
||||
|
||||
### Setup FDTD parameter & excitation function
|
||||
FDTD = openEMS(EndCriteria=1e-4)
|
||||
FDTD.SetGaussExcite( f0, fc )
|
||||
FDTD.SetBoundaryCond( ['MUR', 'MUR', 'MUR', 'MUR', 'MUR', 'PML_8'] )
|
||||
|
||||
### Setup Geometry & Mesh
|
||||
CSX = CSXCAD.ContinuousStructure()
|
||||
FDTD.SetCSX(CSX)
|
||||
mesh = CSX.GetGrid()
|
||||
mesh.SetDeltaUnit(unit)
|
||||
|
||||
max_res = floor(C0 / (f0+fc) / unit / 20) # cell size: lambda/20
|
||||
|
||||
# create helix mesh
|
||||
mesh.AddLine('x', [-Helix_radius, 0, Helix_radius])
|
||||
mesh.SmoothMeshLines('x', Helix_mesh_res)
|
||||
# add the air-box
|
||||
mesh.AddLine('x', [-SimBox[0]/2-gnd_radius, SimBox[0]/2+gnd_radius])
|
||||
# create a smooth mesh between specified fixed mesh lines
|
||||
mesh.SmoothMeshLines('x', max_res, ratio=1.4)
|
||||
|
||||
# copy x-mesh to y-direction
|
||||
mesh.SetLines('y', mesh.GetLines('x'))
|
||||
|
||||
# create helix mesh in z-direction
|
||||
mesh.AddLine('z', [0, feed_heigth, Helix_turns*Helix_pitch+feed_heigth])
|
||||
mesh.SmoothMeshLines('z', Helix_mesh_res)
|
||||
|
||||
# add the air-box
|
||||
mesh.AddLine('z', [-SimBox[2]/2, max(mesh.GetLines('z'))+SimBox[2]/2 ])
|
||||
# create a smooth mesh between specified fixed mesh lines
|
||||
mesh.SmoothMeshLines('z', max_res, ratio=1.4)
|
||||
|
||||
### Create the Geometry
|
||||
## * Create the metal helix using the wire primitive.
|
||||
## * Create a metal gorund plane as cylinder.
|
||||
# create a perfect electric conductor (PEC)
|
||||
helix_metal = CSX.AddMetal('helix' )
|
||||
|
||||
ang = linspace(0,2*pi,21)
|
||||
coil_x = Helix_radius*cos(ang)
|
||||
coil_y = Helix_radius*sin(ang)
|
||||
coil_z = ang/2/pi*Helix_pitch
|
||||
|
||||
Helix_x=np.array([])
|
||||
Helix_y=np.array([])
|
||||
Helix_z=np.array([])
|
||||
zpos = feed_heigth
|
||||
for n in range(Helix_turns-1):
|
||||
Helix_x = r_[Helix_x, coil_x]
|
||||
Helix_y = r_[Helix_y, coil_y]
|
||||
Helix_z = r_[Helix_z ,coil_z+zpos]
|
||||
zpos = zpos + Helix_pitch
|
||||
|
||||
p = np.array([Helix_x, Helix_y, Helix_z])
|
||||
helix_metal.AddCurve(p)
|
||||
|
||||
# create ground circular ground
|
||||
gnd = CSX.AddMetal( 'gnd' ) # create a perfect electric conductor (PEC)
|
||||
|
||||
# add a box using cylindrical coordinates
|
||||
start = [0, 0, -0.1]
|
||||
stop = [0, 0, 0.1]
|
||||
gnd.AddCylinder(start, stop, radius=gnd_radius)
|
||||
|
||||
# apply the excitation & resist as a current source
|
||||
start = [Helix_radius, 0, 0]
|
||||
stop = [Helix_radius, 0, feed_heigth]
|
||||
port = FDTD.AddLumpedPort(1 ,feed_R, start, stop, 'z', 1.0, priority=5)
|
||||
|
||||
# nf2ff calc
|
||||
nf2ff = FDTD.CreateNF2FFBox(opt_resolution=[lambda0/15]*3)
|
||||
|
||||
### Run the simulation
|
||||
if 0: # debugging only
|
||||
CSX_file = os.path.join(Sim_Path, 'helix.xml')
|
||||
if not os.path.exists(Sim_Path):
|
||||
os.mkdir(Sim_Path)
|
||||
CSX.Write2XML(CSX_file)
|
||||
os.system(r'AppCSXCAD "{}"'.format(CSX_file))
|
||||
|
||||
if not post_proc_only:
|
||||
FDTD.Run(Sim_Path, verbose=3, cleanup=True)
|
||||
|
||||
### Postprocessing & plotting
|
||||
freq = linspace( f0-fc, f0+fc, 501 )
|
||||
port.CalcPort(Sim_Path, freq)
|
||||
|
||||
Zin = port.uf_tot / port.if_tot
|
||||
s11 = port.uf_ref / port.uf_inc
|
||||
|
||||
## Plot the feed point impedance
|
||||
figure()
|
||||
plot( freq/1e6, real(Zin), 'k-', linewidth=2, label=r'$\Re(Z_{in})$' )
|
||||
grid()
|
||||
plot( freq/1e6, imag(Zin), 'r--', linewidth=2, label=r'$\Im(Z_{in})$' )
|
||||
title( 'feed point impedance' )
|
||||
xlabel( 'frequency (MHz)' )
|
||||
ylabel( 'impedance ($\Omega$)' )
|
||||
legend( )
|
||||
|
||||
## Plot reflection coefficient S11
|
||||
figure()
|
||||
plot( freq/1e6, 20*log10(abs(s11)), 'k-', linewidth=2 )
|
||||
grid()
|
||||
title( 'reflection coefficient $S_{11}$' )
|
||||
xlabel( 'frequency (MHz)' )
|
||||
ylabel( 'reflection coefficient $|S_{11}|$' )
|
||||
|
||||
### Create the NFFF contour
|
||||
## * calculate the far field at phi=0 degrees and at phi=90 degrees
|
||||
theta = arange(0.,180.,1.)
|
||||
phi = arange(-180,180,2)
|
||||
disp( 'calculating the 3D far field...' )
|
||||
|
||||
nf2ff_res = nf2ff.CalcNF2FF(Sim_Path, f0, theta, phi, read_cached=True, verbose=True )
|
||||
|
||||
Dmax_dB = 10*log10(nf2ff_res.Dmax[0])
|
||||
E_norm = 20.0*log10(nf2ff_res.E_norm[0]/np.max(nf2ff_res.E_norm[0])) + 10*log10(nf2ff_res.Dmax[0])
|
||||
|
||||
theta_HPBW = theta[ np.where(squeeze(E_norm[:,phi==0])<Dmax_dB-3)[0][0] ]
|
||||
|
||||
## * Display power and directivity
|
||||
print('radiated power: Prad = {} W'.format(nf2ff_res.Prad[0]))
|
||||
print('directivity: Dmax = {} dBi'.format(Dmax_dB))
|
||||
print('efficiency: nu_rad = {} %'.format(100*nf2ff_res.Prad[0]/interp(f0, freq, port.P_acc)))
|
||||
print('theta_HPBW = {} °'.format(theta_HPBW))
|
||||
|
||||
E_norm = 20.0*log10(nf2ff_res.E_norm[0]/np.max(nf2ff_res.E_norm[0])) + 10*log10(nf2ff_res.Dmax[0])
|
||||
E_CPRH = 20.0*log10(np.abs(nf2ff_res.E_cprh[0])/np.max(nf2ff_res.E_norm[0])) + 10*log10(nf2ff_res.Dmax[0])
|
||||
E_CPLH = 20.0*log10(np.abs(nf2ff_res.E_cplh[0])/np.max(nf2ff_res.E_norm[0])) + 10*log10(nf2ff_res.Dmax[0])
|
||||
|
||||
## * Plot the pattern
|
||||
figure()
|
||||
plot(theta, E_norm[:,phi==0],'k-' , linewidth=2, label='$|E|$')
|
||||
plot(theta, E_CPRH[:,phi==0],'g--', linewidth=2, label='$|E_{CPRH}|$')
|
||||
plot(theta, E_CPLH[:,phi==0],'r-.', linewidth=2, label='$|E_{CPLH}|$')
|
||||
grid()
|
||||
xlabel('theta (deg)')
|
||||
ylabel('directivity (dBi)')
|
||||
title('Frequency: {} GHz'.format(nf2ff_res.freq[0]/1e9))
|
||||
legend()
|
||||
|
||||
show()
|
||||
|
|
@ -0,0 +1,123 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Microstrip Notch Filter Tutorial
|
||||
|
||||
Describtion at:
|
||||
http://openems.de/doc/openEMS/Tutorials.html#microstrip-notch-filter
|
||||
|
||||
Tested with
|
||||
- python 3.4
|
||||
- openEMS v0.0.34+
|
||||
|
||||
(C) 2016 Thorsten Liebig <thorsten.liebig@gmx.de>
|
||||
|
||||
"""
|
||||
|
||||
### Import Libraries
|
||||
import os, tempfile
|
||||
from pylab import *
|
||||
|
||||
from CSXCAD import ContinuousStructure
|
||||
from openEMS import openEMS
|
||||
from openEMS.physical_constants import *
|
||||
|
||||
|
||||
### Setup the simulation
|
||||
Sim_Path = os.path.join(tempfile.gettempdir(), 'NotchFilter')
|
||||
post_proc_only = False
|
||||
|
||||
unit = 1e-6 # specify everything in um
|
||||
MSL_length = 50000
|
||||
MSL_width = 600
|
||||
substrate_thickness = 254
|
||||
substrate_epr = 3.66
|
||||
stub_length = 12e3
|
||||
f_max = 7e9
|
||||
|
||||
### Setup FDTD parameters & excitation function
|
||||
FDTD = openEMS()
|
||||
FDTD.SetGaussExcite( f_max/2, f_max/2 )
|
||||
FDTD.SetBoundaryCond( ['PML_8', 'PML_8', 'MUR', 'MUR', 'PEC', 'MUR'] )
|
||||
|
||||
### Setup Geometry & Mesh
|
||||
CSX = ContinuousStructure()
|
||||
FDTD.SetCSX(CSX)
|
||||
mesh = CSX.GetGrid()
|
||||
mesh.SetDeltaUnit(unit)
|
||||
|
||||
resolution = C0/(f_max*sqrt(substrate_epr))/unit/50 # resolution of lambda/50
|
||||
third_mesh = array([2*resolution/3, -resolution/3])/4
|
||||
|
||||
## Do manual meshing
|
||||
mesh.AddLine('x', 0)
|
||||
mesh.AddLine('x', MSL_width/2+third_mesh)
|
||||
mesh.AddLine('x', -MSL_width/2-third_mesh)
|
||||
mesh.SmoothMeshLines('x', resolution/4)
|
||||
|
||||
mesh.AddLine('x', [-MSL_length, MSL_length])
|
||||
mesh.SmoothMeshLines('x', resolution)
|
||||
|
||||
mesh.AddLine('y', 0)
|
||||
mesh.AddLine('y', MSL_width/2+third_mesh)
|
||||
mesh.AddLine('y', -MSL_width/2-third_mesh)
|
||||
mesh.SmoothMeshLines('y', resolution/4)
|
||||
|
||||
mesh.AddLine('y', [-15*MSL_width, 15*MSL_width+stub_length])
|
||||
mesh.AddLine('y', (MSL_width/2+stub_length)+third_mesh)
|
||||
mesh.SmoothMeshLines('y', resolution)
|
||||
|
||||
mesh.AddLine('z', linspace(0,substrate_thickness,5))
|
||||
mesh.AddLine('z', 3000)
|
||||
mesh.SmoothMeshLines('z', resolution)
|
||||
|
||||
## Add the substrate
|
||||
substrate = CSX.AddMaterial( 'RO4350B', epsilon=substrate_epr)
|
||||
start = [-MSL_length, -15*MSL_width, 0]
|
||||
stop = [+MSL_length, +15*MSL_width+stub_length, substrate_thickness]
|
||||
substrate.AddBox(start, stop )
|
||||
|
||||
## MSL port setup
|
||||
port = [None, None]
|
||||
pec = CSX.AddMetal( 'PEC' )
|
||||
portstart = [ -MSL_length, -MSL_width/2, substrate_thickness]
|
||||
portstop = [ 0, MSL_width/2, 0]
|
||||
port[0] = FDTD.AddMSLPort( 1, pec, portstart, portstop, 'x', 'z', excite=-1, FeedShift=10*resolution, MeasPlaneShift=MSL_length/3, priority=10)
|
||||
|
||||
portstart = [MSL_length, -MSL_width/2, substrate_thickness]
|
||||
portstop = [0 , MSL_width/2, 0]
|
||||
port[1] = FDTD.AddMSLPort( 2, pec, portstart, portstop, 'x', 'z', MeasPlaneShift=MSL_length/3, priority=10 )
|
||||
|
||||
## Filter-Stub Definition
|
||||
start = [-MSL_width/2, MSL_width/2, substrate_thickness]
|
||||
stop = [ MSL_width/2, MSL_width/2+stub_length, substrate_thickness]
|
||||
pec.AddBox(start, stop, priority=10 )
|
||||
|
||||
### Run the simulation
|
||||
if 0: # debugging only
|
||||
CSX_file = os.path.join(Sim_Path, 'notch.xml')
|
||||
if not os.path.exists(Sim_Path):
|
||||
os.mkdir(Sim_Path)
|
||||
CSX.Write2XML(CSX_file)
|
||||
os.system(r'AppCSXCAD "{}"'.format(CSX_file))
|
||||
|
||||
|
||||
if not post_proc_only:
|
||||
FDTD.Run(Sim_Path, verbose=3, cleanup=True)
|
||||
|
||||
### Post-processing and plotting
|
||||
f = linspace( 1e6, f_max, 1601 )
|
||||
for p in port:
|
||||
p.CalcPort( Sim_Path, f, ref_impedance = 50)
|
||||
|
||||
s11 = port[0].uf_ref / port[0].uf_inc
|
||||
s21 = port[1].uf_ref / port[0].uf_inc
|
||||
|
||||
plot(f/1e9,20*log10(abs(s11)),'k-',linewidth=2 , label='$S_{11}$')
|
||||
grid()
|
||||
plot(f/1e9,20*log10(abs(s21)),'r--',linewidth=2 , label='$S_{21}$')
|
||||
legend()
|
||||
ylabel('S-Parameter (dB)')
|
||||
xlabel('frequency (GHz)')
|
||||
ylim([-40, 2])
|
||||
|
||||
show()
|
|
@ -0,0 +1,126 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Tutorials / radar cross section of a metal sphere
|
||||
|
||||
Tested with
|
||||
- python 3.4
|
||||
- openEMS v0.0.34+
|
||||
|
||||
(C) 2016 Thorsten Liebig <thorsten.liebig@gmx.de>
|
||||
"""
|
||||
|
||||
### Import Libraries
|
||||
import os, tempfile
|
||||
from pylab import *
|
||||
|
||||
from CSXCAD import ContinuousStructure
|
||||
from openEMS import openEMS
|
||||
from openEMS.physical_constants import *
|
||||
from openEMS.ports import UI_data
|
||||
|
||||
### Setup the simulation
|
||||
Sim_Path = os.path.join(tempfile.gettempdir(), 'RCS_Sphere')
|
||||
post_proc_only = False
|
||||
|
||||
unit = 1e-3 # all length in mm
|
||||
|
||||
sphere_rad = 200
|
||||
|
||||
inc_angle = 0 #incident angle (to x-axis) in deg
|
||||
|
||||
# size of the simulation box
|
||||
SimBox = 1200
|
||||
PW_Box = 750
|
||||
|
||||
### Setup FDTD parameters & excitation function
|
||||
FDTD = openEMS(EndCriteria=1e-5)
|
||||
|
||||
f_start = 50e6 # start frequency
|
||||
f_stop = 1000e6 # stop frequency
|
||||
f0 = 500e6
|
||||
FDTD.SetGaussExcite( 0.5*(f_start+f_stop), 0.5*(f_stop-f_start) )
|
||||
|
||||
FDTD.SetBoundaryCond( ['PML_8', 'PML_8', 'PML_8', 'PML_8', 'PML_8', 'PML_8'] )
|
||||
|
||||
### Setup Geometry & Mesh
|
||||
CSX = ContinuousStructure()
|
||||
FDTD.SetCSX(CSX)
|
||||
mesh = CSX.GetGrid()
|
||||
mesh.SetDeltaUnit(unit)
|
||||
|
||||
#create mesh
|
||||
mesh.SetLines('x', [-SimBox/2, 0, SimBox/2])
|
||||
mesh.SmoothMeshLines('x', C0 / f_stop / unit / 20) # cell size: lambda/20
|
||||
mesh.SetLines('y', mesh.GetLines('x'))
|
||||
mesh.SetLines('z', mesh.GetLines('x'))
|
||||
|
||||
### Create a metal sphere and plane wave source
|
||||
sphere_metal = CSX.AddMetal( 'sphere' ) # create a perfect electric conductor (PEC)
|
||||
sphere_metal.AddSphere(priority=10, center=[0, 0, 0], radius=sphere_rad)
|
||||
|
||||
# plane wave excitation
|
||||
k_dir = [cos(inc_angle), sin(inc_angle), 0] # plane wave direction
|
||||
E_dir = [0, 0, 1] # plane wave polarization --> E_z
|
||||
|
||||
pw_exc = CSX.AddExcitation('plane_wave', exc_type=10, exc_val=E_dir)
|
||||
pw_exc.SetPropagationDir(k_dir)
|
||||
pw_exc.SetFrequency(f0)
|
||||
|
||||
start = np.array([-PW_Box/2, -PW_Box/2, -PW_Box/2])
|
||||
stop = -start
|
||||
pw_exc.AddBox(start, stop)
|
||||
|
||||
# nf2ff calc
|
||||
nf2ff = FDTD.CreateNF2FFBox()
|
||||
|
||||
### Run the simulation
|
||||
if 0: # debugging only
|
||||
CSX_file = os.path.join(Sim_Path, 'RCS_Sphere.xml')
|
||||
if not os.path.exists(Sim_Path):
|
||||
os.mkdir(Sim_Path)
|
||||
CSX.Write2XML(CSX_file)
|
||||
os.system(r'AppCSXCAD "{}"'.format(CSX_file))
|
||||
|
||||
|
||||
if not post_proc_only:
|
||||
FDTD.Run(Sim_Path, verbose=3, cleanup=True)
|
||||
|
||||
### Postprocessing & plotting
|
||||
# get Gaussian pulse stength at frequency f0
|
||||
ef = UI_data('et', Sim_Path, freq=f0)
|
||||
|
||||
Pin = 0.5*norm(E_dir)**2/Z0 * abs(ef.ui_f_val[0])**2
|
||||
#
|
||||
nf2ff_res = nf2ff.CalcNF2FF(Sim_Path, f0, 90, arange(-180, 180.1, 2))
|
||||
RCS = 4*pi/Pin[0]*nf2ff_res.P_rad[0]
|
||||
|
||||
fig = figure()
|
||||
ax = fig.add_subplot(111, polar=True)
|
||||
ax.plot( nf2ff_res.phi, RCS[0], 'k-', linewidth=2 )
|
||||
ax.grid(True)
|
||||
|
||||
# calculate RCS over frequency
|
||||
freq = linspace(f_start,f_stop,100)
|
||||
ef = UI_data( 'et', Sim_Path, freq ) # time domain/freq domain voltage
|
||||
Pin = 0.5*norm(E_dir)**2/Z0 * abs(np.array(ef.ui_f_val[0]))**2
|
||||
|
||||
nf2ff_res = nf2ff.CalcNF2FF(Sim_Path, freq, 90, 180+inc_angle, outfile='back_nf2ff.h5')
|
||||
|
||||
back_scat = np.array([4*pi/Pin[fn]*nf2ff_res.P_rad[fn][0][0] for fn in range(len(freq))])
|
||||
|
||||
figure()
|
||||
plot(freq/1e6,back_scat, linewidth=2)
|
||||
grid()
|
||||
xlabel('frequency (MHz)')
|
||||
ylabel('RCS ($m^2$)')
|
||||
title('radar cross section')
|
||||
|
||||
figure()
|
||||
semilogy(sphere_rad*unit/C0*freq,back_scat/(pi*sphere_rad*unit*sphere_rad*unit), linewidth=2)
|
||||
ylim([10^-2, 10^1])
|
||||
grid()
|
||||
xlabel('sphere radius / wavelength')
|
||||
ylabel('RCS / ($\pi a^2$)')
|
||||
title('normalized radar cross section')
|
||||
|
||||
show()
|
|
@ -0,0 +1,125 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Rectangular Waveguide Tutorial
|
||||
|
||||
Describtion at:
|
||||
http://openems.de/doc/openEMS/Tutorials.html#rectangular-waveguide
|
||||
|
||||
Tested with
|
||||
- python 3.4
|
||||
- openEMS v0.0.34+
|
||||
|
||||
(C) 2015-2016 Thorsten Liebig <thorsten.liebig@gmx.de>
|
||||
|
||||
"""
|
||||
|
||||
### Import Libraries
|
||||
import os, tempfile
|
||||
from pylab import *
|
||||
|
||||
from CSXCAD import ContinuousStructure
|
||||
from openEMS import openEMS
|
||||
from openEMS.physical_constants import *
|
||||
|
||||
### Setup the simulation
|
||||
Sim_Path = os.path.join(tempfile.gettempdir(), 'Rect_WG')
|
||||
|
||||
post_proc_only = False
|
||||
unit = 1e-6; #drawing unit in um
|
||||
|
||||
# waveguide dimensions
|
||||
# WR42
|
||||
a = 10700; #waveguide width
|
||||
b = 4300; #waveguide heigth
|
||||
length = 50000;
|
||||
|
||||
# frequency range of interest
|
||||
f_start = 20e9;
|
||||
f_0 = 24e9;
|
||||
f_stop = 26e9;
|
||||
lambda0 = C0/f_0/unit;
|
||||
|
||||
#waveguide TE-mode definition
|
||||
TE_mode = 'TE10';
|
||||
|
||||
#targeted mesh resolution
|
||||
mesh_res = lambda0/30
|
||||
|
||||
### Setup FDTD parameter & excitation function
|
||||
FDTD = openEMS(NrTS=1e4);
|
||||
FDTD.SetGaussExcite(0.5*(f_start+f_stop),0.5*(f_stop-f_start));
|
||||
|
||||
# boundary conditions
|
||||
FDTD.SetBoundaryCond([0, 0, 0, 0, 3, 3]);
|
||||
|
||||
### Setup geometry & mesh
|
||||
CSX = ContinuousStructure()
|
||||
FDTD.SetCSX(CSX)
|
||||
mesh = CSX.GetGrid()
|
||||
mesh.SetDeltaUnit(unit)
|
||||
|
||||
mesh.AddLine('x', [0, a])
|
||||
mesh.AddLine('y', [0, b])
|
||||
mesh.AddLine('z', [0, length])
|
||||
|
||||
## Apply the waveguide port
|
||||
ports = []
|
||||
start=[0, 0, 10*mesh_res];
|
||||
stop =[a, b, 15*mesh_res];
|
||||
mesh.AddLine('z', [start[2], stop[2]])
|
||||
ports.append(FDTD.AddRectWaveGuidePort( 0, start, stop, 'z', a*unit, b*unit, TE_mode, 1))
|
||||
|
||||
start=[0, 0, length-10*mesh_res];
|
||||
stop =[a, b, length-15*mesh_res];
|
||||
mesh.AddLine('z', [start[2], stop[2]])
|
||||
ports.append(FDTD.AddRectWaveGuidePort( 1, start, stop, 'z', a*unit, b*unit, TE_mode))
|
||||
|
||||
mesh.SmoothMeshLines('all', mesh_res, ratio=1.4)
|
||||
|
||||
### Define dump box...
|
||||
Et = CSX.AddDump('Et', file_type=0, sub_sampling=[2,2,2])
|
||||
start = [0, 0, 0];
|
||||
stop = [a, b, length];
|
||||
Et.AddBox(start, stop);
|
||||
|
||||
### Run the simulation
|
||||
if 0: # debugging only
|
||||
CSX_file = os.path.join(Sim_Path, 'rect_wg.xml')
|
||||
if not os.path.exists(Sim_Path):
|
||||
os.mkdir(Sim_Path)
|
||||
CSX.Write2XML(CSX_file)
|
||||
os.system(r'AppCSXCAD "{}"'.format(CSX_file))
|
||||
|
||||
if not post_proc_only:
|
||||
FDTD.Run(Sim_Path, verbose=3, cleanup=True)
|
||||
|
||||
### Postprocessing & plotting
|
||||
freq = linspace(f_start,f_stop,201)
|
||||
for port in ports:
|
||||
port.CalcPort(Sim_Path, freq)
|
||||
|
||||
s11 = ports[0].uf_ref / ports[0].uf_inc
|
||||
s21 = ports[1].uf_ref / ports[0].uf_inc
|
||||
ZL = ports[0].uf_tot / ports[0].if_tot
|
||||
ZL_a = ports[0].ZL # analytic waveguide impedance
|
||||
|
||||
## Plot s-parameter
|
||||
figure()
|
||||
plot(freq*1e-6,20*log10(abs(s11)),'k-',linewidth=2, label='$S_{11}$')
|
||||
grid()
|
||||
plot(freq*1e-6,20*log10(abs(s21)),'r--',linewidth=2, label='$S_{21}$')
|
||||
legend();
|
||||
ylabel('S-Parameter (dB)')
|
||||
xlabel(r'frequency (MHz) $\rightarrow$')
|
||||
|
||||
## Compare analytic and numerical wave-impedance
|
||||
figure()
|
||||
plot(freq*1e-6,real(ZL), linewidth=2, label='$\Re\{Z_L\}$')
|
||||
grid()
|
||||
plot(freq*1e-6,imag(ZL),'r--', linewidth=2, label='$\Im\{Z_L\}$')
|
||||
plot(freq*1e-6,ZL_a,'g-.',linewidth=2, label='$Z_{L, analytic}$')
|
||||
ylabel('ZL $(\Omega)$')
|
||||
xlabel(r'frequency (MHz) $\rightarrow$')
|
||||
legend()
|
||||
|
||||
show()
|
|
@ -0,0 +1,151 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Fri Dec 18 20:56:53 2015
|
||||
|
||||
@author: thorsten
|
||||
"""
|
||||
|
||||
### Import Libraries
|
||||
import os, tempfile
|
||||
from pylab import *
|
||||
|
||||
from CSXCAD import ContinuousStructure
|
||||
from openEMS import openEMS
|
||||
from openEMS.physical_constants import *
|
||||
|
||||
### General parameter setup
|
||||
Sim_Path = os.path.join(tempfile.gettempdir(), 'Simp_Patch')
|
||||
|
||||
post_proc_only = False
|
||||
|
||||
# patch width (resonant length) in x-direction
|
||||
patch_width = 32 #
|
||||
# patch length in y-direction
|
||||
patch_length = 40
|
||||
|
||||
#substrate setup
|
||||
substrate_epsR = 3.38
|
||||
substrate_kappa = 1e-3 * 2*pi*2.45e9 * EPS0*substrate_epsR
|
||||
substrate_width = 60
|
||||
substrate_length = 60
|
||||
substrate_thickness = 1.524
|
||||
substrate_cells = 4
|
||||
|
||||
#setup feeding
|
||||
feed_pos = -6 #feeding position in x-direction
|
||||
feed_R = 50 #feed resistance
|
||||
|
||||
# size of the simulation box
|
||||
SimBox = np.array([200, 200, 150])
|
||||
|
||||
# setup FDTD parameter & excitation function
|
||||
f0 = 2e9 # center frequency
|
||||
fc = 1e9 # 20 dB corner frequency
|
||||
|
||||
### FDTD setup
|
||||
## * Limit the simulation to 30k timesteps
|
||||
## * Define a reduced end criteria of -40dB
|
||||
FDTD = openEMS(NrTS=30000, EndCriteria=1e-4)
|
||||
FDTD.SetGaussExcite( f0, fc )
|
||||
FDTD.SetBoundaryCond( ['MUR', 'MUR', 'MUR', 'MUR', 'MUR', 'MUR'] )
|
||||
|
||||
|
||||
CSX = ContinuousStructure()
|
||||
FDTD.SetCSX(CSX)
|
||||
mesh = CSX.GetGrid()
|
||||
mesh.SetDeltaUnit(1e-3)
|
||||
mesh_res = C0/(f0+fc)/1e-3/20
|
||||
|
||||
### Generate properties, primitives and mesh-grid
|
||||
#initialize the mesh with the "air-box" dimensions
|
||||
mesh.AddLine('x', [-SimBox[0]/2, SimBox[0]/2])
|
||||
mesh.AddLine('y', [-SimBox[1]/2, SimBox[1]/2] )
|
||||
mesh.AddLine('z', [-SimBox[2]/3, SimBox[2]*2/3] )
|
||||
|
||||
# create patch
|
||||
patch = CSX.AddMetal( 'patch' ) # create a perfect electric conductor (PEC)
|
||||
start = [-patch_width/2, -patch_length/2, substrate_thickness]
|
||||
stop = [ patch_width/2 , patch_length/2, substrate_thickness]
|
||||
patch.AddBox(priority=10, start=start, stop=stop) # add a box-primitive to the metal property 'patch'
|
||||
FDTD.AddEdges2Grid(dirs='xy', properties=patch, metal_edge_res=mesh_res/2)
|
||||
|
||||
# create substrate
|
||||
substrate = CSX.AddMaterial( 'substrate', epsilon=substrate_epsR, kappa=substrate_kappa)
|
||||
start = [-substrate_width/2, -substrate_length/2, 0]
|
||||
stop = [ substrate_width/2, substrate_length/2, substrate_thickness]
|
||||
substrate.AddBox( priority=0, start=start, stop=stop )
|
||||
|
||||
# add extra cells to discretize the substrate thickness
|
||||
mesh.AddLine('z', linspace(0,substrate_thickness,substrate_cells+1))
|
||||
|
||||
# create ground (same size as substrate)
|
||||
gnd = CSX.AddMetal( 'gnd' ) # create a perfect electric conductor (PEC)
|
||||
start[2]=0
|
||||
stop[2] =0
|
||||
gnd.AddBox(start, stop, priority=10)
|
||||
|
||||
FDTD.AddEdges2Grid(dirs='xy', properties=gnd)
|
||||
|
||||
# apply the excitation & resist as a current source
|
||||
start = [feed_pos, 0, 0]
|
||||
stop = [feed_pos, 0, substrate_thickness]
|
||||
port = FDTD.AddLumpedPort(1, feed_R, start, stop, 'z', 1.0, priority=5, edges2grid='xy')
|
||||
|
||||
mesh.SmoothMeshLines('all', mesh_res, 1.4)
|
||||
|
||||
# Add the nf2ff recording box
|
||||
nf2ff = FDTD.CreateNF2FFBox()
|
||||
|
||||
### Run the simulation
|
||||
if 0: # debugging only
|
||||
CSX_file = os.path.join(Sim_Path, 'simp_patch.xml')
|
||||
if not os.path.exists(Sim_Path):
|
||||
os.mkdir(Sim_Path)
|
||||
CSX.Write2XML(CSX_file)
|
||||
os.system(r'AppCSXCAD "{}"'.format(CSX_file))
|
||||
|
||||
if not post_proc_only:
|
||||
FDTD.Run(Sim_Path, verbose=3, cleanup=True)
|
||||
|
||||
|
||||
### Post-processing and plotting
|
||||
f = np.linspace(max(1e9,f0-fc),f0+fc,401)
|
||||
port.CalcPort(Sim_Path, f)
|
||||
s11 = port.uf_ref/port.uf_inc
|
||||
s11_dB = 20.0*np.log10(np.abs(s11))
|
||||
figure()
|
||||
plot(f/1e9, s11_dB, 'k-', linewidth=2, label='$S_{11}$')
|
||||
grid()
|
||||
legend()
|
||||
ylabel('S-Parameter (dB)')
|
||||
xlabel('Frequency (GHz)')
|
||||
|
||||
idx = np.where((s11_dB<-10) & (s11_dB==np.min(s11_dB)))[0]
|
||||
if not len(idx)==1:
|
||||
print('No resonance frequency found for far-field calulation')
|
||||
else:
|
||||
f_res = f[idx[0]]
|
||||
theta = np.arange(-180.0, 180.0, 2.0)
|
||||
phi = [0., 90.]
|
||||
nf2ff_res = nf2ff.CalcNF2FF(Sim_Path, f_res, theta, phi, center=[0,0,1e-3])
|
||||
|
||||
figure()
|
||||
E_norm = 20.0*np.log10(nf2ff_res.E_norm[0]/np.max(nf2ff_res.E_norm[0])) + nf2ff_res.Dmax[0]
|
||||
plot(theta, np.squeeze(E_norm[:,0]), 'k-', linewidth=2, label='xz-plane')
|
||||
plot(theta, np.squeeze(E_norm[:,1]), 'r--', linewidth=2, label='yz-plane')
|
||||
grid()
|
||||
ylabel('Directivity (dBi)')
|
||||
xlabel('Theta (deg)')
|
||||
title('Frequency: {} GHz'.format(f_res/1e9))
|
||||
legend()
|
||||
|
||||
Zin = port.uf_tot/port.if_tot
|
||||
figure()
|
||||
plot(f/1e9, np.real(Zin), 'k-', linewidth=2, label='$\Re\{Z_{in}\}$')
|
||||
plot(f/1e9, np.imag(Zin), 'r--', linewidth=2, label='$\Im\{Z_{in}\}$')
|
||||
grid()
|
||||
legend()
|
||||
ylabel('Zin (Ohm)')
|
||||
xlabel('Frequency (GHz)')
|
||||
|
||||
show()
|
|
@ -0,0 +1,9 @@
|
|||
Antennas
|
||||
--------
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 1
|
||||
|
||||
Simple_Patch_Antenna
|
||||
Helical_Antenna
|
||||
Bent_Patch_Antenna
|
|
@ -0,0 +1,35 @@
|
|||
Bent Patch Antenna
|
||||
==================
|
||||
|
||||
* Setup & Simulate a bent patch antenna using a cylindrical mesh
|
||||
|
||||
Introduction
|
||||
-------------
|
||||
**This tutorial covers:**
|
||||
|
||||
* Setup of a Bent Patch Antenna (see for comparison: :ref:`simple_patch_antenna`)
|
||||
* setup of a *cylindrical FDTD mesh*.
|
||||
* Calculate the S-Parameter and input impedance
|
||||
* Calculate far-field pattern 2D/3D
|
||||
|
||||
|
||||
Python Script
|
||||
-------------
|
||||
Get the latest version `from git <http://www.openems.de/gitweb/?p=openEMS.git;a=blob_plain;f=matlab/Tutorials/Bent_Patch_Antenna.m;hb=refs/heads/master>`_.
|
||||
|
||||
.. include:: ./__Bent_Patch_Antenna.txt
|
||||
|
||||
Images
|
||||
-------------
|
||||
.. figure:: images/Bent_Patch.png
|
||||
:width: 49%
|
||||
:alt: alternate text
|
||||
|
||||
3D view of the Bent Patch Antenna (AppCSXCAD)
|
||||
|
||||
.. figure:: images/Bent_Patch_Pattern.png
|
||||
:width: 80%
|
||||
:alt: Farfield pattern
|
||||
|
||||
Farfield pattern on an xy- and xz-plane
|
||||
|
|
@ -0,0 +1,40 @@
|
|||
CRLH Parameter Extraction
|
||||
=========================
|
||||
|
||||
* Setup a composite-right/left-handed (CRLH) unit cell and extract the equivalent circuit parameter.
|
||||
|
||||
Introduction
|
||||
-------------
|
||||
**This tutorial covers:**
|
||||
|
||||
* Setup a feeding mircostrip line & port
|
||||
* Apply an inhomogeneous mesh used for improved accuracy and simulation speed
|
||||
* Use an internal clss to setup a CRLH unit cell
|
||||
* Use the port voltages and currents to extract the unit cell equivalent circuit parameter
|
||||
|
||||
.. figure:: images/CRLH_cell.png
|
||||
:width: 80%
|
||||
:alt: CRLH unit cell with feeding MSL.
|
||||
|
||||
CRLH unit cell with feeding MSL.
|
||||
|
||||
Python Script
|
||||
-------------
|
||||
Get the latest version `from git <http://www.openems.de/gitweb/?p=openEMS.git;a=blob_plain;f=matlab/Tutorials/Bent_Patch_Antenna.m;hb=refs/heads/master>`_.
|
||||
|
||||
.. include:: ./__CRLH_Extraction.txt
|
||||
|
||||
Images
|
||||
-------------
|
||||
|
||||
.. figure:: images/CRLH_Spara.png
|
||||
:width: 80%
|
||||
:alt: CRLH cell S-parameter
|
||||
|
||||
CRLH cell S-parameter
|
||||
|
||||
.. figure:: images/CRLH_dispersion.png
|
||||
:width: 80%
|
||||
:alt: CRLH unit cell dispersion diagram
|
||||
|
||||
CRLH unit cell dispersion diagram
|
|
@ -0,0 +1,32 @@
|
|||
Helical Antenna
|
||||
===============
|
||||
|
||||
Introduction
|
||||
-------------
|
||||
**This tutorial covers:**
|
||||
|
||||
* setup of a helix using the wire primitive
|
||||
* setup a lumped feeding port (R_in = 120 Ohms)
|
||||
* adding a near-field to far-field (nf2ff) box using an efficient subsampling
|
||||
* calculate the S-Parameter of the antenna
|
||||
* calculate and plot the far-field pattern
|
||||
|
||||
Python Script
|
||||
-------------
|
||||
Get the latest version `from git <http://www.openems.de/gitweb/?p=openEMS.git;a=blob_plain;f=matlab/Tutorials/Helical_Antenna.m;hb=refs/heads/master>`_.
|
||||
|
||||
.. include:: ./__Helical_Antenna.txt
|
||||
|
||||
Images
|
||||
-------------
|
||||
.. figure:: images/Helix_Ant.png
|
||||
:width: 49%
|
||||
:alt: alternate text
|
||||
|
||||
3D view of the Helical Antenna (AppCSXCAD)
|
||||
|
||||
.. figure:: images/Helix_Ant_Pattern.png
|
||||
:width: 49%
|
||||
:alt: alternate text
|
||||
|
||||
Far-Field pattern showing a right-handed circular polarization.
|
|
@ -0,0 +1,10 @@
|
|||
.. _intro_tutorials:
|
||||
|
||||
Introductional Tutorials
|
||||
------------------------
|
||||
|
||||
|
||||
.. toctree::
|
||||
|
||||
Rect_Waveguide
|
||||
RCS_Sphere
|
|
@ -0,0 +1,27 @@
|
|||
Microstrip Notch Filter
|
||||
=======================
|
||||
|
||||
* A straight MSL line with a open-ended stub to create a simple microwave filter.
|
||||
|
||||
Introduction
|
||||
-------------
|
||||
**This tutorial covers:**
|
||||
|
||||
|
||||
* Setup a mircostrip line (MSL) and MSL port
|
||||
* Apply an inhomogeneous mesh used for improved accuracy and simulation speed
|
||||
* Calculate the S-Parameter of the filter
|
||||
|
||||
Python Script
|
||||
-------------
|
||||
Get the latest version `from git <http://openems.de/gitweb/?p=openEMS.git;a=blob_plain;f=matlab/Tutorials/MSL_NotchFilter.m;hb=HEAD>`_.
|
||||
|
||||
.. include:: ./__MSL_NotchFilter.txt
|
||||
|
||||
Images
|
||||
-------------
|
||||
.. figure:: images/Notch_Filter_SPara.png
|
||||
:width: 49%
|
||||
:alt: S-Parameter over Frequency
|
||||
|
||||
S-Parameter over Frequency
|
|
@ -0,0 +1,10 @@
|
|||
.. _microwave_tutorials:
|
||||
|
||||
Micro Wave Tutorials
|
||||
--------------------
|
||||
|
||||
|
||||
.. toctree::
|
||||
|
||||
MSL_NotchFilter
|
||||
CRLH_Extraction
|
|
@ -0,0 +1,32 @@
|
|||
Metal Sphere Radar Cross Section
|
||||
================================
|
||||
|
||||
* A 3D simulation demonstrating a the total-field/scattered-field approach on a metallic sphere with a RCS (radar cross section) calculation.
|
||||
|
||||
Introduction
|
||||
-------------
|
||||
**This tutorial covers:**
|
||||
|
||||
|
||||
* The total-field/scattered-field approach
|
||||
* Calculation of a radar cross section (RCS)
|
||||
|
||||
Python Script
|
||||
-------------
|
||||
Get the latest version `from git <https://raw.githubusercontent.com/thliebig/openEMS/master/python/Tutorials/RCS_Sphere.py>`_.
|
||||
|
||||
.. include:: ./__RCS_Sphere.txt
|
||||
|
||||
Images
|
||||
-------------
|
||||
.. figure:: images/RCS_pattern.png
|
||||
:width: 49%
|
||||
:alt: Radar cross section pattern
|
||||
|
||||
Radar cross section pattern
|
||||
|
||||
.. figure:: images/RCS_norm.png
|
||||
:width: 49%
|
||||
:alt: normalized radar cross section
|
||||
|
||||
Normalized radar cross Section over normalized wavelength
|
|
@ -0,0 +1,27 @@
|
|||
Rectangular Waveguide
|
||||
=====================
|
||||
|
||||
* A simple rectangular waveguide, showing the openEMS mode profile capabilities.
|
||||
|
||||
Introduction
|
||||
-------------
|
||||
**This tutorial covers:**
|
||||
|
||||
* Setup a mode profile excitation
|
||||
* Create voltage and current probes using the mode profile
|
||||
* Calculate the waveguide impedance and S-Parameter
|
||||
|
||||
|
||||
Python Script
|
||||
-------------
|
||||
Get the latest version `from git <http://openems.de/gitweb/?p=openEMS.git;a=blob_plain;f=matlab/Tutorials/Rect_Waveguide.m;hb=HEAD>`_.
|
||||
|
||||
.. include:: ./__Rect_Waveguide.txt
|
||||
|
||||
Images
|
||||
-------------
|
||||
.. figure:: images/Rect_WG_SPara.png
|
||||
:width: 49%
|
||||
:alt: S-Parameter over Frequency
|
||||
|
||||
S-Parameter over Frequency
|
|
@ -0,0 +1,42 @@
|
|||
.. _simple_patch_antenna:
|
||||
|
||||
Simple Patch Antenna
|
||||
====================
|
||||
|
||||
Introduction
|
||||
------------
|
||||
A simple patch antenna for 2.4 GHz.
|
||||
|
||||
**This tutorial covers:**
|
||||
|
||||
* Setup a patch, substrate and ground.
|
||||
* Setup of a lumped feeding port.
|
||||
* Adding a near-field to far-field (nf2ff) recording box.
|
||||
* Calculate the S-Parameter of the antenna.
|
||||
* Calculate and plot the far-field pattern
|
||||
|
||||
Python Script
|
||||
-------------
|
||||
Get the latest version `from git <http://www.openems.de/gitweb/?p=openEMS.git;a=blob_plain;f=matlab/Tutorials/Simple_Patch_Antenna.m;hb=refs/heads/master>`_.
|
||||
|
||||
.. include:: ./__Simple_Patch_Antenna.txt
|
||||
|
||||
Images
|
||||
------
|
||||
.. figure:: images/Simp_Patch_S11.png
|
||||
:width: 49%
|
||||
:alt: S11 over Frequency
|
||||
|
||||
S-Parameter over Frequency
|
||||
|
||||
.. figure:: images/Simp_Patch_Zin.png
|
||||
:width: 49%
|
||||
:alt: Input Impedance
|
||||
|
||||
Antenna Input Impedance
|
||||
|
||||
.. figure:: images/Simp_Patch_Pattern.png
|
||||
:width: 49%
|
||||
:alt: Farfield pattern
|
||||
|
||||
Farfield pattern for the xy- and yz-plane.
|
After Width: | Height: | Size: 346 KiB |
After Width: | Height: | Size: 125 KiB |
After Width: | Height: | Size: 44 KiB |
After Width: | Height: | Size: 42 KiB |
After Width: | Height: | Size: 157 KiB |
After Width: | Height: | Size: 57 KiB |
After Width: | Height: | Size: 304 KiB |
After Width: | Height: | Size: 62 KiB |
After Width: | Height: | Size: 48 KiB |
After Width: | Height: | Size: 42 KiB |
After Width: | Height: | Size: 60 KiB |
After Width: | Height: | Size: 28 KiB |
After Width: | Height: | Size: 53 KiB |
After Width: | Height: | Size: 28 KiB |
After Width: | Height: | Size: 39 KiB |
|
@ -0,0 +1,12 @@
|
|||
.. _tutorials:
|
||||
|
||||
#########
|
||||
Tutorials
|
||||
#########
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 2
|
||||
|
||||
Intro_Tutorials
|
||||
MicroWave_Tutorials
|
||||
Antenna_Tutorials
|
|
@ -0,0 +1,297 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
#
|
||||
# openEMS documentation build configuration file, created by
|
||||
# sphinx-quickstart on Thu Sep 8 20:42:18 2016.
|
||||
#
|
||||
# This file is execfile()d with the current directory set to its
|
||||
# containing dir.
|
||||
#
|
||||
# Note that not all possible configuration values are present in this
|
||||
# autogenerated file.
|
||||
#
|
||||
# All configuration values have a default; values that are commented out
|
||||
# serve to show the default.
|
||||
|
||||
import sys
|
||||
import os
|
||||
import sphinx_rtd_theme
|
||||
|
||||
# If extensions (or modules to document with autodoc) are in another directory,
|
||||
# add these directories to sys.path here. If the directory is relative to the
|
||||
# documentation root, use os.path.abspath to make it absolute, like shown here.
|
||||
#sys.path.insert(0, os.path.abspath('.'))
|
||||
|
||||
# -- General configuration ------------------------------------------------
|
||||
|
||||
# If your documentation needs a minimal Sphinx version, state it here.
|
||||
#needs_sphinx = '1.0'
|
||||
|
||||
# Add any Sphinx extension module names here, as strings. They can be
|
||||
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
|
||||
# ones.
|
||||
extensions = [
|
||||
'sphinx.ext.autodoc',
|
||||
'sphinx.ext.intersphinx',
|
||||
'sphinx.ext.todo',
|
||||
'sphinx.ext.mathjax',
|
||||
'numpydoc',
|
||||
'sphinx.ext.autosummary',
|
||||
]
|
||||
|
||||
# Add any paths that contain templates here, relative to this directory.
|
||||
templates_path = ['_templates']
|
||||
|
||||
# The suffix(es) of source filenames.
|
||||
# You can specify multiple suffix as a list of string:
|
||||
# source_suffix = ['.rst', '.md']
|
||||
source_suffix = '.rst'
|
||||
|
||||
# The encoding of source files.
|
||||
#source_encoding = 'utf-8-sig'
|
||||
|
||||
# The master toctree document.
|
||||
master_doc = 'index'
|
||||
|
||||
# General information about the project.
|
||||
project = 'openEMS'
|
||||
copyright = '2016, Thorsten Liebig'
|
||||
author = 'Thorsten Liebig'
|
||||
|
||||
# The version info for the project you're documenting, acts as replacement for
|
||||
# |version| and |release|, also used in various other places throughout the
|
||||
# built documents.
|
||||
#
|
||||
# The short X.Y version.
|
||||
version = '0.0.34'
|
||||
# The full version, including alpha/beta/rc tags.
|
||||
release = '0.0.34'
|
||||
|
||||
# The language for content autogenerated by Sphinx. Refer to documentation
|
||||
# for a list of supported languages.
|
||||
#
|
||||
# This is also used if you do content translation via gettext catalogs.
|
||||
# Usually you set "language" from the command line for these cases.
|
||||
language = None
|
||||
|
||||
# There are two options for replacing |today|: either, you set today to some
|
||||
# non-false value, then it is used:
|
||||
#today = ''
|
||||
# Else, today_fmt is used as the format for a strftime call.
|
||||
#today_fmt = '%B %d, %Y'
|
||||
|
||||
# List of patterns, relative to source directory, that match files and
|
||||
# directories to ignore when looking for source files.
|
||||
exclude_patterns = ['_build']
|
||||
|
||||
# The reST default role (used for this markup: `text`) to use for all
|
||||
# documents.
|
||||
#default_role = None
|
||||
|
||||
# If true, '()' will be appended to :func: etc. cross-reference text.
|
||||
#add_function_parentheses = True
|
||||
|
||||
# If true, the current module name will be prepended to all description
|
||||
# unit titles (such as .. function::).
|
||||
#add_module_names = True
|
||||
|
||||
# If true, sectionauthor and moduleauthor directives will be shown in the
|
||||
# output. They are ignored by default.
|
||||
#show_authors = False
|
||||
|
||||
# The name of the Pygments (syntax highlighting) style to use.
|
||||
pygments_style = 'sphinx'
|
||||
|
||||
# A list of ignored prefixes for module index sorting.
|
||||
#modindex_common_prefix = []
|
||||
|
||||
# If true, keep warnings as "system message" paragraphs in the built documents.
|
||||
#keep_warnings = False
|
||||
|
||||
# If true, `todo` and `todoList` produce output, else they produce nothing.
|
||||
todo_include_todos = True
|
||||
|
||||
|
||||
# -- Options for HTML output ----------------------------------------------
|
||||
|
||||
# The theme to use for HTML and HTML Help pages. See the documentation for
|
||||
# a list of builtin themes.
|
||||
html_theme = 'sphinx_rtd_theme'
|
||||
|
||||
# Theme options are theme-specific and customize the look and feel of a theme
|
||||
# further. For a list of options available for each theme, see the
|
||||
# documentation.
|
||||
#html_theme_options = {}
|
||||
|
||||
# Add any paths that contain custom themes here, relative to this directory.
|
||||
#html_theme_path = []
|
||||
|
||||
# The name for this set of Sphinx documents. If None, it defaults to
|
||||
# "<project> v<release> documentation".
|
||||
#html_title = None
|
||||
|
||||
# A shorter title for the navigation bar. Default is the same as html_title.
|
||||
#html_short_title = None
|
||||
|
||||
# The name of an image file (relative to this directory) to place at the top
|
||||
# of the sidebar.
|
||||
#html_logo = None
|
||||
|
||||
# The name of an image file (relative to this directory) to use as a favicon of
|
||||
# the docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32
|
||||
# pixels large.
|
||||
#html_favicon = None
|
||||
|
||||
# Add any paths that contain custom static files (such as style sheets) here,
|
||||
# relative to this directory. They are copied after the builtin static files,
|
||||
# so a file named "default.css" will overwrite the builtin "default.css".
|
||||
html_static_path = ['_static']
|
||||
|
||||
# Add any extra paths that contain custom files (such as robots.txt or
|
||||
# .htaccess) here, relative to this directory. These files are copied
|
||||
# directly to the root of the documentation.
|
||||
#html_extra_path = []
|
||||
|
||||
# If not '', a 'Last updated on:' timestamp is inserted at every page bottom,
|
||||
# using the given strftime format.
|
||||
#html_last_updated_fmt = '%b %d, %Y'
|
||||
|
||||
# If true, SmartyPants will be used to convert quotes and dashes to
|
||||
# typographically correct entities.
|
||||
#html_use_smartypants = True
|
||||
|
||||
# Custom sidebar templates, maps document names to template names.
|
||||
#html_sidebars = {}
|
||||
|
||||
# Additional templates that should be rendered to pages, maps page names to
|
||||
# template names.
|
||||
#html_additional_pages = {}
|
||||
|
||||
# If false, no module index is generated.
|
||||
#html_domain_indices = True
|
||||
|
||||
# If false, no index is generated.
|
||||
#html_use_index = True
|
||||
|
||||
# If true, the index is split into individual pages for each letter.
|
||||
#html_split_index = False
|
||||
|
||||
# If true, links to the reST sources are added to the pages.
|
||||
#html_show_sourcelink = True
|
||||
|
||||
# If true, "Created using Sphinx" is shown in the HTML footer. Default is True.
|
||||
#html_show_sphinx = True
|
||||
|
||||
# If true, "(C) Copyright ..." is shown in the HTML footer. Default is True.
|
||||
#html_show_copyright = True
|
||||
|
||||
# If true, an OpenSearch description file will be output, and all pages will
|
||||
# contain a <link> tag referring to it. The value of this option must be the
|
||||
# base URL from which the finished HTML is served.
|
||||
#html_use_opensearch = ''
|
||||
|
||||
# This is the file name suffix for HTML files (e.g. ".xhtml").
|
||||
#html_file_suffix = None
|
||||
|
||||
# Language to be used for generating the HTML full-text search index.
|
||||
# Sphinx supports the following languages:
|
||||
# 'da', 'de', 'en', 'es', 'fi', 'fr', 'h', 'it', 'ja'
|
||||
# 'nl', 'no', 'pt', 'ro', 'r', 'sv', 'tr'
|
||||
#html_search_language = 'en'
|
||||
|
||||
# A dictionary with options for the search language support, empty by default.
|
||||
# Now only 'ja' uses this config value
|
||||
#html_search_options = {'type': 'default'}
|
||||
|
||||
# The name of a javascript file (relative to the configuration directory) that
|
||||
# implements a search results scorer. If empty, the default will be used.
|
||||
#html_search_scorer = 'scorer.js'
|
||||
|
||||
# Output file base name for HTML help builder.
|
||||
htmlhelp_basename = 'openEMSdoc'
|
||||
|
||||
# -- Options for LaTeX output ---------------------------------------------
|
||||
|
||||
latex_elements = {
|
||||
# The paper size ('letterpaper' or 'a4paper').
|
||||
#'papersize': 'letterpaper',
|
||||
|
||||
# The font size ('10pt', '11pt' or '12pt').
|
||||
#'pointsize': '10pt',
|
||||
|
||||
# Additional stuff for the LaTeX preamble.
|
||||
#'preamble': '',
|
||||
|
||||
# Latex figure (float) alignment
|
||||
#'figure_align': 'htbp',
|
||||
}
|
||||
|
||||
# Grouping the document tree into LaTeX files. List of tuples
|
||||
# (source start file, target name, title,
|
||||
# author, documentclass [howto, manual, or own class]).
|
||||
latex_documents = [
|
||||
(master_doc, 'openEMS.tex', 'openEMS Documentation',
|
||||
'Thorsten Liebig', 'manual'),
|
||||
]
|
||||
|
||||
# The name of an image file (relative to this directory) to place at the top of
|
||||
# the title page.
|
||||
#latex_logo = None
|
||||
|
||||
# For "manual" documents, if this is true, then toplevel headings are parts,
|
||||
# not chapters.
|
||||
#latex_use_parts = False
|
||||
|
||||
# If true, show page references after internal links.
|
||||
#latex_show_pagerefs = False
|
||||
|
||||
# If true, show URL addresses after external links.
|
||||
#latex_show_urls = False
|
||||
|
||||
# Documents to append as an appendix to all manuals.
|
||||
#latex_appendices = []
|
||||
|
||||
# If false, no module index is generated.
|
||||
#latex_domain_indices = True
|
||||
|
||||
|
||||
# -- Options for manual page output ---------------------------------------
|
||||
|
||||
# One entry per manual page. List of tuples
|
||||
# (source start file, name, description, authors, manual section).
|
||||
man_pages = [
|
||||
(master_doc, 'openems', 'openEMS Documentation',
|
||||
[author], 1)
|
||||
]
|
||||
|
||||
# If true, show URL addresses after external links.
|
||||
#man_show_urls = False
|
||||
|
||||
|
||||
# -- Options for Texinfo output -------------------------------------------
|
||||
|
||||
# Grouping the document tree into Texinfo files. List of tuples
|
||||
# (source start file, target name, title, author,
|
||||
# dir menu entry, description, category)
|
||||
texinfo_documents = [
|
||||
(master_doc, 'openEMS', 'openEMS Documentation',
|
||||
author, 'openEMS', 'One line description of project.',
|
||||
'Miscellaneous'),
|
||||
]
|
||||
|
||||
# Documents to append as an appendix to all manuals.
|
||||
#texinfo_appendices = []
|
||||
|
||||
# If false, no module index is generated.
|
||||
#texinfo_domain_indices = True
|
||||
|
||||
# How to display URL addresses: 'footnote', 'no', or 'inline'.
|
||||
#texinfo_show_urls = 'footnote'
|
||||
|
||||
# If true, do not generate a @detailmenu in the "Top" node's menu.
|
||||
#texinfo_no_detailmenu = False
|
||||
|
||||
numpydoc_show_class_members = False
|
||||
|
||||
# Example configuration for intersphinx: refer to the Python standard library.
|
||||
intersphinx_mapping = {'CSXCAD': ('http://openems.de/doc/CSXCAD/', None)}
|
|
@ -0,0 +1,63 @@
|
|||
#!/usr/bin/python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Sat Sep 10 17:12:53 2016
|
||||
|
||||
@author: thorsten
|
||||
"""
|
||||
|
||||
import os
|
||||
import glob
|
||||
|
||||
DOC_DIR = os.path.dirname(__file__)
|
||||
ROOT_DIR = os.path.join(DOC_DIR, '..')
|
||||
|
||||
def main():
|
||||
in_path = os.path.join(ROOT_DIR, 'Tutorials')
|
||||
|
||||
fns = glob.glob(os.path.join(in_path, '*.py'))
|
||||
|
||||
for fn in fns:
|
||||
bn = os.path.basename(fn)
|
||||
out_fn = os.path.join(DOC_DIR, 'Tutorials', '__' + bn.replace('.py', '.txt'))
|
||||
|
||||
in_code_block = False
|
||||
in_ignore_block = False
|
||||
out_fh = open(out_fn, 'w')
|
||||
for line in open(fn, 'r'):
|
||||
if in_ignore_block==False and line.startswith('"""'):
|
||||
in_ignore_block = True
|
||||
in_code_block = False
|
||||
continue
|
||||
elif in_ignore_block==True and line.startswith('"""'):
|
||||
in_ignore_block = False
|
||||
in_code_block = False
|
||||
continue
|
||||
elif in_ignore_block==True:
|
||||
in_code_block = False
|
||||
continue
|
||||
elif line.startswith('# -*-'):
|
||||
continue
|
||||
elif not line.startswith('##'):
|
||||
if not in_code_block:
|
||||
if len(line.strip())==0:
|
||||
continue
|
||||
out_fh.write('\n.. code-block:: python\n\n')
|
||||
in_code_block = True
|
||||
out_fh.write(' ' + line)
|
||||
elif line.startswith('###'):
|
||||
if in_code_block:
|
||||
out_fh.write('\n')
|
||||
in_code_block = False
|
||||
line = line.replace('#','').strip()
|
||||
out_fh.write('**' + line + '**\n\n')
|
||||
# out_fh.write('"'*len(line) + '\n')
|
||||
elif line.startswith('##'):
|
||||
if in_code_block:
|
||||
out_fh.write('\n')
|
||||
in_code_block = False
|
||||
out_fh.write(line.replace('#','').strip() + '\n')
|
||||
out_fh.close()
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
|
@ -0,0 +1,24 @@
|
|||
.. openEMS documentation master file, created by
|
||||
sphinx-quickstart on Thu Sep 8 20:42:18 2016.
|
||||
You can adapt this file completely to your liking, but it should at least
|
||||
contain the root `toctree` directive.
|
||||
|
||||
Welcome to openEMS's documentation!
|
||||
===================================
|
||||
|
||||
Contents:
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 3
|
||||
|
||||
Tutorials/index
|
||||
openEMS_API
|
||||
|
||||
|
||||
Indices and tables
|
||||
==================
|
||||
|
||||
* :ref:`genindex`
|
||||
* :ref:`modindex`
|
||||
* :ref:`search`
|
||||
|
|
@ -0,0 +1,16 @@
|
|||
.. _nf2ff:
|
||||
|
||||
NF2FF
|
||||
-----
|
||||
|
||||
.. automodule:: openEMS.nf2ff
|
||||
|
||||
NF2FF
|
||||
-----
|
||||
.. autoclass:: nf2ff
|
||||
:members:
|
||||
|
||||
NF2FF Results
|
||||
-----------------
|
||||
.. autoclass:: nf2ff_results
|
||||
:members:
|
|
@ -0,0 +1,8 @@
|
|||
.. _openems:
|
||||
|
||||
openEMS
|
||||
-------
|
||||
|
||||
.. automodule:: openEMS
|
||||
:members: openEMS
|
||||
:undoc-members:
|
|
@ -0,0 +1,11 @@
|
|||
.. _openems_api:
|
||||
|
||||
openEMS Python Interface
|
||||
========================
|
||||
|
||||
.. toctree::
|
||||
|
||||
openEMS
|
||||
ports
|
||||
nf2ff
|
||||
|
|
@ -0,0 +1,37 @@
|
|||
.. _ports:
|
||||
|
||||
Ports
|
||||
-----
|
||||
|
||||
.. automodule:: openEMS.ports
|
||||
|
||||
Port (Base Class)
|
||||
-----------------
|
||||
.. autoclass:: Port
|
||||
:members:
|
||||
:show-inheritance:
|
||||
|
||||
Lumped Port
|
||||
-----------
|
||||
.. autoclass:: LumpedPort
|
||||
:members:
|
||||
:show-inheritance:
|
||||
|
||||
MSL Port
|
||||
--------
|
||||
.. autoclass:: MSLPort
|
||||
:members:
|
||||
:show-inheritance:
|
||||
|
||||
Waveguide Port
|
||||
--------------
|
||||
.. autoclass:: WaveguidePort
|
||||
:members:
|
||||
:show-inheritance:
|
||||
|
||||
Rect Waveguide Port
|
||||
-------------------
|
||||
.. autoclass:: RectWGPort
|
||||
:members:
|
||||
:show-inheritance:
|
||||
|
|
@ -0,0 +1,4 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
#
|
||||
# Shortcut openEMS import
|
||||
from openEMS.openEMS import openEMS
|
|
@ -0,0 +1,49 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
#
|
||||
# Copyright (C) 2015,20016 Thorsten Liebig (Thorsten.Liebig@gmx.de)
|
||||
#
|
||||
# This program is free software: you can redistribute it and/or modify
|
||||
# it under the terms of the GNU General Public License as published
|
||||
# by the Free Software Foundation, either version 3 of the License, or
|
||||
# (at your option) any later version.
|
||||
#
|
||||
# This program is distributed in the hope that it will be useful,
|
||||
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
# GNU General Public License for more details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License
|
||||
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
#
|
||||
|
||||
from libcpp.string cimport string
|
||||
from libcpp.vector cimport vector
|
||||
from libcpp.complex cimport complex
|
||||
from libcpp cimport bool
|
||||
cimport cython.numeric
|
||||
|
||||
cdef extern from "openEMS/nf2ff.h":
|
||||
cdef cppclass cpp_nf2ff "nf2ff":
|
||||
cpp_nf2ff(vector[float] freq, vector[float] theta, vector[float] phi, vector[float] center, unsigned int numThreads) except +
|
||||
|
||||
bool AnalyseFile(string E_Field_file, string H_Field_file)
|
||||
|
||||
void SetRadius(float radius)
|
||||
void SetPermittivity(vector[float] permittivity);
|
||||
void SetPermeability(vector[float] permeability);
|
||||
|
||||
void SetMirror(int _type, int _dir, float pos);
|
||||
|
||||
double GetTotalRadPower(size_t f_idx)
|
||||
double GetMaxDirectivity(size_t f_idx)
|
||||
|
||||
complex[double]** GetETheta(size_t f_idx)
|
||||
complex[double]** GetEPhi(size_t f_idx)
|
||||
double** GetRadPower(size_t f_idx)
|
||||
|
||||
bool Write2HDF5(string filename)
|
||||
|
||||
void SetVerboseLevel(int level)
|
||||
|
||||
cdef class _nf2ff:
|
||||
cdef cpp_nf2ff *thisptr
|
|
@ -0,0 +1,59 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
#
|
||||
# Copyright (C) 2015,20016 Thorsten Liebig (Thorsten.Liebig@gmx.de)
|
||||
#
|
||||
# This program is free software: you can redistribute it and/or modify
|
||||
# it under the terms of the GNU General Public License as published
|
||||
# by the Free Software Foundation, either version 3 of the License, or
|
||||
# (at your option) any later version.
|
||||
#
|
||||
# This program is distributed in the hope that it will be useful,
|
||||
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
# GNU General Public License for more details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License
|
||||
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
#
|
||||
|
||||
cimport _nf2ff
|
||||
import numpy as np
|
||||
import os
|
||||
from CSXCAD.Utilities import CheckNyDir
|
||||
|
||||
cdef class _nf2ff:
|
||||
def __cinit__(self, freq, theta, phi, center, numThreads=0, **kw):
|
||||
if type(freq) in [float, int]:
|
||||
freq = list(float(freq))
|
||||
if type(theta) in [float, int]:
|
||||
theta = list(float(theta))
|
||||
if type(phi) in [float, int]:
|
||||
phi = list(float(phi))
|
||||
self.thisptr = new cpp_nf2ff(freq, theta, phi, center, numThreads)
|
||||
|
||||
if 'verbose' in kw:
|
||||
self.SetVerboseLevel(kw['verbose'])
|
||||
del kw['verbose']
|
||||
|
||||
assert len(kw)==0, 'Unknown keyword(s): {}'.format(kw)
|
||||
|
||||
def AnalyseFile(self, e_file, h_file):
|
||||
assert os.path.exists(e_file)
|
||||
assert os.path.exists(h_file)
|
||||
return self.thisptr.AnalyseFile(e_file.encode('UTF-8'), h_file.encode('UTF-8'))
|
||||
|
||||
def SetMirror(self, mirr_type, ny, pos):
|
||||
if mirr_type<=0:
|
||||
return
|
||||
assert mirr_type<3
|
||||
ny = CheckNyDir(ny)
|
||||
self.thisptr.SetMirror(mirr_type, ny, pos)
|
||||
|
||||
def SetRadius(self, radius):
|
||||
self.thisptr.SetRadius(radius)
|
||||
|
||||
def Write2HDF5(self, filename):
|
||||
return self.thisptr.Write2HDF5(filename.encode('UTF-8'))
|
||||
|
||||
def SetVerboseLevel(self, level):
|
||||
self.thisptr.SetVerboseLevel(level)
|
|
@ -0,0 +1,77 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Sun Feb 19 20:29:25 2017
|
||||
|
||||
@author: thorsten
|
||||
"""
|
||||
|
||||
import sys
|
||||
import numpy as np
|
||||
|
||||
from CSXCAD import CSPrimitives
|
||||
from CSXCAD.Utilities import CheckNyDir, GetMultiDirs
|
||||
|
||||
def mesh_hint_from_primitive(primitive, dirs, **kw):
|
||||
if primitive.GetType() is CSPrimitives.POINT:
|
||||
return mesh_hint_from_point(primitive, dirs, **kw)
|
||||
if primitive.GetType() is CSPrimitives.BOX:
|
||||
return mesh_hint_from_box(primitive, dirs, **kw)
|
||||
else:
|
||||
return None
|
||||
|
||||
def mesh_hint_from_point(point, dirs, **kw):
|
||||
""" mesh_hint_from_point(point, dirs)
|
||||
|
||||
Get a grid hint for the coordinates of the point.
|
||||
|
||||
:param dirs: str -- 'x','y','z' or 'xy', 'yz' or 'xyz' or 'all'
|
||||
:returns: (3,) list of mesh hints
|
||||
"""
|
||||
hint = [None, None, None]
|
||||
coord = point.GetCoord()
|
||||
for ny in GetMultiDirs(dirs):
|
||||
hint[ny] = [coord[ny],]
|
||||
return hint
|
||||
|
||||
def mesh_hint_from_box(box, dirs, **kw):
|
||||
""" mesh_hint_from_box(box, dirs, metal_edge_res=None, **kw)
|
||||
|
||||
Get a grid hint for the edges of the given box with an an optional 2D metal
|
||||
edge resolution.
|
||||
|
||||
:param dirs: str -- 'x','y','z' or 'xy', 'yz' or 'xyz' or 'all'
|
||||
:param metal_edge_res: float -- 2D flat edge resolution
|
||||
:returns: (3,) list of mesh hints
|
||||
"""
|
||||
metal_edge_res = kw.get('metal_edge_res', None)
|
||||
up_dir = kw.get('up_dir' , True)
|
||||
down_dir = kw.get('down_dir', True)
|
||||
|
||||
if metal_edge_res is None:
|
||||
mer = 0
|
||||
else:
|
||||
mer = np.array([-1.0, 2.0])/3 * metal_edge_res
|
||||
if box.HasTransform():
|
||||
sys.stderr.write('FDTD::automesh: Warning, cannot add edges to grid with transformations enabled\n')
|
||||
return
|
||||
hint = [None, None, None]
|
||||
start = np.fmin(box.GetStart(), box.GetStop())
|
||||
stop = np.fmax(box.GetStart(), box.GetStop())
|
||||
for ny in GetMultiDirs(dirs):
|
||||
hint[ny] = []
|
||||
if metal_edge_res is not None and stop[ny]-start[ny]>metal_edge_res:
|
||||
if down_dir:
|
||||
hint[ny].append(start[ny]-mer[0])
|
||||
hint[ny].append(start[ny]-mer[1])
|
||||
if up_dir:
|
||||
hint[ny].append(stop[ny]+mer[0])
|
||||
hint[ny].append(stop[ny]+mer[1])
|
||||
elif stop[ny]-start[ny]:
|
||||
if down_dir:
|
||||
hint[ny].append(start[ny])
|
||||
if up_dir:
|
||||
hint[ny].append(stop[ny])
|
||||
else:
|
||||
hint[ny].append(start[ny])
|
||||
return hint
|
||||
|
|
@ -0,0 +1,210 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
#
|
||||
# Copyright (C) 2015,20016 Thorsten Liebig (Thorsten.Liebig@gmx.de)
|
||||
#
|
||||
# This program is free software: you can redistribute it and/or modify
|
||||
# it under the terms of the GNU General Public License as published
|
||||
# by the Free Software Foundation, either version 3 of the License, or
|
||||
# (at your option) any later version.
|
||||
#
|
||||
# This program is distributed in the hope that it will be useful,
|
||||
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
# GNU General Public License for more details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License
|
||||
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
#
|
||||
|
||||
import os
|
||||
import numpy as np
|
||||
import h5py
|
||||
from openEMS import _nf2ff
|
||||
from openEMS import utilities
|
||||
|
||||
class nf2ff:
|
||||
"""
|
||||
Create an nf2ff recording box. The nf2ff can either record in time-domain
|
||||
or frequency-domain. Further more certain directions and boundary condition
|
||||
mirroring can be enabled/disabled.
|
||||
|
||||
:param name: str -- Name for this recording box.
|
||||
:param start/stop: (3,) array -- Box start/stop coordinates.
|
||||
:param directions: (6,) bool array -- Enable/Disables directions.
|
||||
:param mirror: (6,) int array -- 0 (Off), 1 (PEC) or 2 (PMC) boundary mirroring
|
||||
:param frequency: array like -- List of frequencies (FD-domain recording)
|
||||
"""
|
||||
def __init__(self, CSX, name, start, stop, **kw):
|
||||
self.CSX = CSX
|
||||
self.name = name
|
||||
self.start = start
|
||||
self.stop = stop
|
||||
|
||||
self.freq = None
|
||||
self.theta = None
|
||||
self.phi = None
|
||||
self.center = None
|
||||
|
||||
self.directions = [True]*6 # all directions by default
|
||||
if 'directions' in kw:
|
||||
self.directions = kw['directions']
|
||||
del kw['directions']
|
||||
assert len(self.directions)==6
|
||||
|
||||
self.mirror = [0]*6
|
||||
if 'mirror' in kw:
|
||||
self.mirror = kw['mirror']
|
||||
del kw['mirror']
|
||||
assert len(self.mirror)==6
|
||||
|
||||
self.dump_type = 0 # default Et/Ht
|
||||
self.dump_mode = 1 # default cell interpolated
|
||||
|
||||
self.freq = None # broadband recording by defualt
|
||||
if 'frequency' in kw:
|
||||
self.freq = kw['frequency']
|
||||
del kw['frequency']
|
||||
self.dump_type = 10 # Ef/Hf
|
||||
|
||||
if np.isscalar(self.freq):
|
||||
self.freq = [self.freq]
|
||||
|
||||
self.e_file = '{}_E'.format(self.name)
|
||||
self.h_file = '{}_H'.format(self.name)
|
||||
|
||||
self.e_dump = CSX.AddDump(self.e_file, dump_type=self.dump_type , dump_mode=self.dump_mode, file_type=1, **kw)
|
||||
self.h_dump = CSX.AddDump(self.h_file, dump_type=self.dump_type+1, dump_mode=self.dump_mode, file_type=1, **kw)
|
||||
if self.freq is not None:
|
||||
self.e_dump.SetFrequency(self.freq)
|
||||
self.h_dump.SetFrequency(self.freq)
|
||||
|
||||
# print(self.directions)
|
||||
for ny in range(3):
|
||||
pos = 2*ny
|
||||
if self.directions[pos]:
|
||||
l_start = np.array(start)
|
||||
l_stop = np.array(stop)
|
||||
l_stop[ny] = l_start[ny]
|
||||
self.e_dump.AddBox(l_start, l_stop)
|
||||
self.h_dump.AddBox(l_start, l_stop)
|
||||
if self.directions[pos+1]:
|
||||
l_start = np.array(start)
|
||||
l_stop = np.array(stop)
|
||||
l_start[ny] = l_stop[ny]
|
||||
self.e_dump.AddBox(l_start, l_stop)
|
||||
self.h_dump.AddBox(l_start, l_stop)
|
||||
|
||||
def CalcNF2FF(self, sim_path, freq, theta, phi, radius=1, center=[0,0,0], outfile=None, read_cached=False, verbose=0):
|
||||
""" CalcNF2FF(sim_path, freq, theta, phi, center=[0,0,0], outfile=None, read_cached=True, verbose=0):
|
||||
|
||||
Calculate the far-field after the simulation is done.
|
||||
|
||||
:param sim_path: str -- Simulation path
|
||||
:param freq: array like -- list of frequency for transformation
|
||||
:param theta/phi: array like -- Theta/Phi angles to calculate the far-field
|
||||
:param radius: float -- Radius to calculate the far-field (default is 1m)
|
||||
:param center: (3,) array -- phase center, must be inside the recording box
|
||||
:param outfile: str -- File to save results in. (defaults to recording name)
|
||||
:param read_cached: bool -- enable/disable read already existing results (default off)
|
||||
:param verbose: int -- set verbose level (default 0)
|
||||
|
||||
:returns: nf2ff_results class instance
|
||||
"""
|
||||
if np.isscalar(freq):
|
||||
freq = [freq]
|
||||
self.freq = freq
|
||||
if np.isscalar(theta):
|
||||
theta = [theta]
|
||||
self.theta = theta
|
||||
if np.isscalar(phi):
|
||||
phi = [phi]
|
||||
self.phi = phi
|
||||
self.center = center
|
||||
|
||||
if outfile is None:
|
||||
fn = os.path.join(sim_path, self.name + '.h5')
|
||||
else:
|
||||
fn = os.path.join(sim_path, outfile)
|
||||
if not read_cached or not os.path.exists(fn):
|
||||
nfc = _nf2ff._nf2ff(self.freq, np.deg2rad(theta), np.deg2rad(phi), center, verbose=verbose)
|
||||
|
||||
for ny in range(3):
|
||||
nfc.SetMirror(self.mirror[2*ny] , ny, self.start[ny])
|
||||
nfc.SetMirror(self.mirror[2*ny+1], ny, self.stop[ny])
|
||||
|
||||
nfc.SetRadius(radius)
|
||||
|
||||
for n in range(6):
|
||||
fn_e = os.path.join(sim_path, self.e_file + '_{}.h5'.format(n))
|
||||
fn_h = os.path.join(sim_path, self.h_file + '_{}.h5'.format(n))
|
||||
if os.path.exists(fn_e) and os.path.exists(fn_h):
|
||||
assert nfc.AnalyseFile(fn_e, fn_h)
|
||||
|
||||
nfc.Write2HDF5(fn)
|
||||
|
||||
result = nf2ff_results(fn)
|
||||
if result.phi is not None:
|
||||
assert np.abs((result.r-radius)/radius)<1e-6, 'Radius does not match. Did you read an invalid chached result? Try "read_cached=False"'
|
||||
assert utilities.Check_Array_Equal(np.rad2deg(result.theta), self.theta, 1e-4), 'Theta array does not match. Did you read an invalid chached result? Try "read_cached=False"'
|
||||
assert utilities.Check_Array_Equal(np.rad2deg(result.phi), self.phi, 1e-4), 'Phi array does not match. Did you read an invalid chached result? Try "read_cached=False"'
|
||||
assert utilities.Check_Array_Equal(result.freq, self.freq, 1e-6, relative=True), 'Frequency array does not match. Did you read an invalid chached result? Try "read_cached=False"'
|
||||
return result
|
||||
|
||||
class nf2ff_results:
|
||||
"""
|
||||
nf2ff result class containing all results obtained by the nf2ff calculation.
|
||||
Usueally returned from nf2ff.CalcNF2FF
|
||||
|
||||
Available attributes:
|
||||
|
||||
* `fn` : file name
|
||||
* `theta`: theta angles
|
||||
* `phi` : phi angles
|
||||
* `r` : radius
|
||||
* `freq` : frequencies
|
||||
* `Dmax` : directivity over frequency
|
||||
* `Prad` : total radiated power over frequency
|
||||
|
||||
* `E_theta` : theta component of electric field over frequency/theta/phi
|
||||
* `E_phi` : phi component of electric field over frequency/theta/phi
|
||||
* `E_norm` : abs component of electric field over frequency/theta/phi
|
||||
* `E_cprh` : theta component of electric field over frequency/theta/phi
|
||||
* `E_cplh` : theta component of electric field over frequency/theta/phi
|
||||
* `P_rad` : radiated power (S) over frequency/theta/phi
|
||||
"""
|
||||
def __init__(self, fn):
|
||||
self.fn = fn
|
||||
h5_file = h5py.File(fn, 'r')
|
||||
mesh_grp = h5_file['Mesh']
|
||||
self.phi = np.array(mesh_grp['phi'])
|
||||
self.theta = np.array(mesh_grp['theta'])
|
||||
self.r = np.array(mesh_grp['r'])
|
||||
|
||||
data = h5_file['nf2ff']
|
||||
self.freq = np.array(data.attrs['Frequency'])
|
||||
|
||||
self.Dmax = np.array(data.attrs['Dmax'])
|
||||
self.Prad = np.array(data.attrs['Prad'])
|
||||
|
||||
THETA, PHI = np.meshgrid(self.theta, self.phi, indexing='ij')
|
||||
cos_phi = np.cos(PHI)
|
||||
sin_phi = np.sin(PHI)
|
||||
|
||||
self.E_theta = []
|
||||
self.E_phi = []
|
||||
self.P_rad = []
|
||||
self.E_norm = []
|
||||
self.E_cprh = []
|
||||
self.E_cplh = []
|
||||
for n in range(len(self.freq)):
|
||||
E_theta = np.array(h5_file['/nf2ff/E_theta/FD/f{}_real'.format(n)]) + 1j*np.array(h5_file['/nf2ff/E_theta/FD/f{}_imag'.format(n)])
|
||||
E_theta = np.swapaxes(E_theta, 0, 1)
|
||||
E_phi = np.array(h5_file['/nf2ff/E_phi/FD/f{}_real'.format(n)]) + 1j*np.array(h5_file['/nf2ff/E_phi/FD/f{}_imag'.format(n)])
|
||||
E_phi = np.swapaxes(E_phi, 0, 1)
|
||||
self.P_rad .append(np.swapaxes(np.array(h5_file['/nf2ff/P_rad/FD/f{}'.format(n)]), 0, 1))
|
||||
|
||||
self.E_theta.append(E_theta)
|
||||
self.E_phi .append(E_phi)
|
||||
self.E_norm .append(np.sqrt(np.abs(E_theta)**2 + np.abs(E_phi)**2))
|
||||
self.E_cprh .append((cos_phi+1j*sin_phi) * (E_theta+1j*E_phi)/np.sqrt(2.0))
|
||||
self.E_cplh .append((cos_phi-1j*sin_phi) * (E_theta-1j*E_phi)/np.sqrt(2.0))
|
|
@ -0,0 +1,60 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
#
|
||||
# Copyright (C) 2015,20016 Thorsten Liebig (Thorsten.Liebig@gmx.de)
|
||||
#
|
||||
# This program is free software: you can redistribute it and/or modify
|
||||
# it under the terms of the GNU General Public License as published
|
||||
# by the Free Software Foundation, either version 3 of the License, or
|
||||
# (at your option) any later version.
|
||||
#
|
||||
# This program is distributed in the hope that it will be useful,
|
||||
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
# GNU General Public License for more details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License
|
||||
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
#
|
||||
|
||||
from libcpp.string cimport string
|
||||
from libcpp cimport bool
|
||||
|
||||
from CSXCAD.CSXCAD cimport _ContinuousStructure, ContinuousStructure
|
||||
|
||||
cdef extern from "openEMS/openems.h":
|
||||
cdef cppclass _openEMS "openEMS":
|
||||
_openEMS() except +
|
||||
void SetNumberOfTimeSteps(unsigned int val)
|
||||
void SetCSX(_ContinuousStructure* csx)
|
||||
|
||||
void SetEndCriteria(double val)
|
||||
void SetOverSampling(int val)
|
||||
void SetCellConstantMaterial(bool val)
|
||||
|
||||
void SetCylinderCoords(bool val)
|
||||
void SetupCylinderMultiGrid(string val)
|
||||
|
||||
void SetTimeStepMethod(int val)
|
||||
void SetTimeStep(double val)
|
||||
void SetTimeStepFactor(double val)
|
||||
void SetMaxTime(double val)
|
||||
|
||||
void Set_BC_Type(int idx, int _type)
|
||||
int Get_BC_Type(int idx)
|
||||
void Set_BC_PML(int idx, unsigned int size)
|
||||
int Get_PML_Size(int idx)
|
||||
void Set_Mur_PhaseVel(int idx, double val)
|
||||
|
||||
void SetGaussExcite(double f0, double fc)
|
||||
|
||||
void SetVerboseLevel(int level)
|
||||
|
||||
int SetupFDTD()
|
||||
void RunFDTD()
|
||||
|
||||
@staticmethod
|
||||
void WelcomeScreen()
|
||||
|
||||
cdef class openEMS:
|
||||
cdef _openEMS *thisptr
|
||||
cdef readonly ContinuousStructure __CSX # hold a C++ instance which we're wrapping
|
|
@ -0,0 +1,440 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
#
|
||||
# Copyright (C) 2015,20016 Thorsten Liebig (Thorsten.Liebig@gmx.de)
|
||||
#
|
||||
# This program is free software: you can redistribute it and/or modify
|
||||
# it under the terms of the GNU General Public License as published
|
||||
# by the Free Software Foundation, either version 3 of the License, or
|
||||
# (at your option) any later version.
|
||||
#
|
||||
# This program is distributed in the hope that it will be useful,
|
||||
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
# GNU General Public License for more details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License
|
||||
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
#
|
||||
|
||||
import os, sys, shutil
|
||||
import numpy as np
|
||||
cimport openEMS
|
||||
from . import ports, nf2ff, automesh
|
||||
|
||||
from CSXCAD.Utilities import GetMultiDirs
|
||||
|
||||
cdef class openEMS:
|
||||
""" openEMS
|
||||
|
||||
This class is the main control class for the FDTD options and setup and
|
||||
to run the final simulation.
|
||||
|
||||
Examples
|
||||
--------
|
||||
|
||||
>>> CSX = CSXCAD.ContinuousStructure()
|
||||
>>>
|
||||
>>> grid = CSX.GetGrid()
|
||||
>>> grid.SetLines('x', np.arange(-50,50,1))
|
||||
>>> grid.SetLines('y', np.arange(-50,50,1))
|
||||
>>> grid.SetLines('z', np.arange(-2,2.1,1))
|
||||
>>> grid.SetDeltaUnit(1e-3)
|
||||
>>>
|
||||
>>> FDTD = openEMS(NrTS=1e4, EndCriteria=1e-4)
|
||||
>>>
|
||||
>>> FDTD.SetCSX(CSX)
|
||||
>>> FDTD.SetBoundaryCond(['PML_8', 'PML_8', 'PML_8', 'PML_8', 'PEC', 'PEC'])
|
||||
>>> FDTD.SetGaussExcite(0, 10e9)
|
||||
>>>
|
||||
>>> FDTD.AddLumpedPort(port_nr=1, R=50, start=[10, 0, -2], stop=[10, 0, 2], p_dir='z', excite=1)
|
||||
>>>
|
||||
>>> FDTD.Run(sim_path='/tmp/test')
|
||||
|
||||
:param NrTS: max. number of timesteps to simulate (e.g. default=1e9)
|
||||
:param EndCriteria: end criteria, e.g. 1e-5, simulations stops if energy has decayed by this value (<1e-4 is recommended, default=1e-5)
|
||||
:param MaxTime: max. real time in seconds to simulate
|
||||
:param OverSampling: nyquist oversampling of time domain dumps
|
||||
:param CoordSystem: choose coordinate system (0 Cartesian, 1 Cylindrical)
|
||||
:param MultiGrid: define a cylindrical sub-grid radius
|
||||
:param TimeStep: force to use a given timestep (dangerous!)
|
||||
:param TimeStepFactor: reduce the timestep by a given factor (>0 to <=1)
|
||||
:param TimeStepMethod: 1 or 3 chose timestep method (1=CFL, 3=Rennigs (default))
|
||||
:param CellConstantMaterial: set to 1 to assume a material is constant inside a cell (material probing in cell center)
|
||||
"""
|
||||
@staticmethod
|
||||
def WelcomeScreen():
|
||||
"""
|
||||
Show the openEMS welcome screen.
|
||||
"""
|
||||
_openEMS.WelcomeScreen()
|
||||
|
||||
def __cinit__(self, *args, **kw):
|
||||
self.thisptr = new _openEMS()
|
||||
self.__CSX = None
|
||||
|
||||
if 'NrTS' in kw:
|
||||
self.SetNumberOfTimeSteps(kw['NrTS'])
|
||||
del kw['NrTS']
|
||||
else:
|
||||
self.SetNumberOfTimeSteps(1e9)
|
||||
if 'EndCriteria' in kw:
|
||||
self.SetEndCriteria(kw['EndCriteria'])
|
||||
del kw['EndCriteria']
|
||||
if 'MaxTime' in kw:
|
||||
self.SetMaxTime(kw['MaxTime'])
|
||||
del kw['MaxTime']
|
||||
if 'OverSampling' in kw:
|
||||
self.SetOverSampling(kw['OverSampling'])
|
||||
del kw['OverSampling']
|
||||
if 'CoordSystem' in kw:
|
||||
self.SetCoordSystem(kw['CoordSystem'])
|
||||
del kw['CoordSystem']
|
||||
if 'TimeStep' in kw:
|
||||
self.SetTimeStep(kw['TimeStep'])
|
||||
del kw['TimeStep']
|
||||
if 'TimeStepFactor' in kw:
|
||||
self.SetTimeStepFactor(kw['TimeStepFactor'])
|
||||
del kw['TimeStepFactor']
|
||||
if 'TimeStepMethod' in kw:
|
||||
self.SetTimeStepMethod(kw['TimeStepMethod'])
|
||||
del kw['TimeStepMethod']
|
||||
if 'CellConstantMaterial' in kw:
|
||||
self.SetCellConstantMaterial(kw['CellConstantMaterial'])
|
||||
del kw['CellConstantMaterial']
|
||||
if 'MultiGrid' in kw:
|
||||
self.SetMultiGrid(kw['MultiGrid'])
|
||||
del kw['MultiGrid']
|
||||
|
||||
assert len(kw)==0, 'Unknown keyword arguments: "{}"'.format(kw)
|
||||
|
||||
def __dealloc__(self):
|
||||
del self.thisptr
|
||||
if self.__CSX is not None:
|
||||
self.__CSX.thisptr = NULL
|
||||
|
||||
def SetNumberOfTimeSteps(self, val):
|
||||
""" SetNumberOfTimeSteps(val)
|
||||
|
||||
Set the number of timesteps. E.g. 5e4 (default is 1e9)
|
||||
"""
|
||||
self.thisptr.SetNumberOfTimeSteps(val)
|
||||
|
||||
def SetEndCriteria(self, val):
|
||||
""" SetEndCriteria(val)
|
||||
|
||||
Set the end critera value. E.g. 1e-6 for -60dB
|
||||
"""
|
||||
self.thisptr.SetEndCriteria(val)
|
||||
|
||||
def SetOverSampling(self, val):
|
||||
""" SetOverSampling(val)
|
||||
|
||||
Set the time domain signal oversampling as multiple of the Nyquist-rate.
|
||||
"""
|
||||
self.thisptr.SetOverSampling(val)
|
||||
|
||||
def SetCellConstantMaterial(self, val):
|
||||
""" SetCellConstantMaterial(val)
|
||||
|
||||
Set cell material averaging to assume constant material inside each primary cell. (Advanced option)
|
||||
|
||||
:param val: bool -- Enable or Disable (default disabled)
|
||||
"""
|
||||
self.thisptr.SetCellConstantMaterial(val)
|
||||
|
||||
def SetCoordSystem(self, val):
|
||||
""" SetCoordSystem(val)
|
||||
|
||||
Set the coordinate system. 0 --> Cartesian (default), 1 --> cylindrical
|
||||
"""
|
||||
assert (val==0 or val==1), 'SetCoordSystem: Invalid coordinate system'
|
||||
if val==0:
|
||||
self.thisptr.SetCylinderCoords(False)
|
||||
elif val==1:
|
||||
self.thisptr.SetCylinderCoords(True)
|
||||
|
||||
def SetMultiGrid(self, radii):
|
||||
""" SetMultiGrid(radii)
|
||||
|
||||
Define radii at which a cylindrical multi grid should be defined.
|
||||
|
||||
:param radii: array like, multigrid radii
|
||||
|
||||
See Also
|
||||
--------
|
||||
openEMS.SetCylinderCoords
|
||||
"""
|
||||
assert len(radii)>0, 'SetMultiGrid: invalid multi grid definition'
|
||||
|
||||
grid_str = ','.join(['{}'.format(x) for x in radii])
|
||||
self.thisptr.SetupCylinderMultiGrid(grid_str.encode('UTF-8'))
|
||||
|
||||
def SetCylinderCoords(self):
|
||||
""" SetCylinderCoords()
|
||||
|
||||
Enable use of cylindircal coordinates.
|
||||
|
||||
See Also
|
||||
--------
|
||||
openEMS.SetMultiGrid
|
||||
"""
|
||||
self.thisptr.SetCylinderCoords(True)
|
||||
|
||||
def SetTimeStepMethod(self, val):
|
||||
""" SetTimeStepMethod(val)
|
||||
|
||||
Set the time step calculation method. (Advanced option)
|
||||
|
||||
Options:
|
||||
|
||||
* 1: CFL criteria
|
||||
* 3: Advanced Rennings criteria (default)
|
||||
|
||||
:param val: int -- 1 or 3 (See above)
|
||||
"""
|
||||
self.thisptr.SetTimeStepMethod(val)
|
||||
|
||||
def SetTimeStep(self, val):
|
||||
""" SetTimeStep(val)
|
||||
|
||||
Set/force the timestep. (Advanced option)
|
||||
|
||||
It is highly recommended to not use this method! You may use the
|
||||
SetTimeStepFactor instead to reduce the time step if necessary!
|
||||
"""
|
||||
self.thisptr.SetTimeStep(val)
|
||||
|
||||
def SetTimeStepFactor(self, val):
|
||||
""" SetTimeStepFactor(val)
|
||||
|
||||
Set a time step factor (>0..1) to increase FDTD stability.
|
||||
|
||||
:param val: float -- >0..1
|
||||
"""
|
||||
self.thisptr.SetTimeStepFactor(val)
|
||||
|
||||
def SetMaxTime(self, val):
|
||||
""" SetMaxTime(val)
|
||||
|
||||
Set max simulation time for a max. number of timesteps.
|
||||
"""
|
||||
self.thisptr.SetMaxTime(val)
|
||||
|
||||
def SetGaussExcite(self, f0, fc):
|
||||
""" SetGaussExcite(f0, fc)
|
||||
|
||||
Set a Gaussian pulse as excitation signal.
|
||||
|
||||
:param f0: float -- Center frequency in Hz.
|
||||
:param fc: float -- -20dB bandwidth in Hz.
|
||||
"""
|
||||
self.thisptr.SetGaussExcite(f0, fc)
|
||||
|
||||
|
||||
def SetBoundaryCond(self, BC):
|
||||
""" SetBoundaryCond(BC)
|
||||
|
||||
Set the boundary conditions for all six FDTD directions.
|
||||
|
||||
Options:
|
||||
|
||||
* 0 or 'PEC' : perfect electric conductor (default)
|
||||
* 1 or 'PMC' : perfect magnetic conductor, useful for symmetries
|
||||
* 2 or 'MUR' : simple MUR absorbing boundary conditions
|
||||
* 3 or 'PML-8' : PML absorbing boundary conditions
|
||||
|
||||
:param BC: (8,) array or list -- see options above
|
||||
"""
|
||||
assert len(BC)==6
|
||||
for n in range(len(BC)):
|
||||
if type(BC[n])==int:
|
||||
self.thisptr.Set_BC_Type(n, BC[n])
|
||||
continue
|
||||
if BC[n] in ['PEC', 'PMC', 'MUR']:
|
||||
self.thisptr.Set_BC_Type(n, ['PEC', 'PMC', 'MUR'].index(BC[n]))
|
||||
continue
|
||||
if BC[n].startswith('PML_'):
|
||||
size = int(BC[n].strip('PML_'))
|
||||
self.thisptr.Set_BC_PML(n, size)
|
||||
continue
|
||||
raise Exception('Unknown boundary condition')
|
||||
|
||||
def AddLumpedPort(self, port_nr, R, start, stop, p_dir, excite=0, **kw):
|
||||
""" AddLumpedPort(port_nr, R, start, stop, p_dir, excite=0, **kw)
|
||||
|
||||
Add a lumped port wit the given values and location.
|
||||
|
||||
See Also
|
||||
--------
|
||||
openEMS.ports.LumpedPort
|
||||
"""
|
||||
assert self.__CSX is not None, 'AddLumpedPort: CSX is not set!'
|
||||
port = ports.LumpedPort(self.__CSX, port_nr, R, start, stop, p_dir, excite, **kw)
|
||||
edges2grid = kw.get('edges2grid', None)
|
||||
if edges2grid is not None:
|
||||
grid = self.__CSX.GetGrid()
|
||||
for n in GetMultiDirs(edges2grid):
|
||||
grid.AddLine(n, start[n])
|
||||
if start[n] != stop[n]:
|
||||
grid.AddLine(n, stop[n])
|
||||
return port
|
||||
|
||||
def AddWaveGuidePort(self, port_nr, start, stop, p_dir, E_func, H_func, kc, excite=0, **kw):
|
||||
""" AddWaveGuidePort(self, port_nr, start, stop, p_dir, E_func, H_func, kc, excite=0, **kw)
|
||||
|
||||
Add a arbitrary waveguide port.
|
||||
|
||||
See Also
|
||||
--------
|
||||
openEMS.ports.WaveguidePort
|
||||
"""
|
||||
assert self.__CSX is not None, 'AddWaveGuidePort: CSX is not set!'
|
||||
return ports.WaveguidePort(self.__CSX, port_nr, start, stop, p_dir, E_func, H_func, kc, excite, **kw)
|
||||
|
||||
def AddRectWaveGuidePort(self, port_nr, start, stop, p_dir, a, b, mode_name, excite=0, **kw):
|
||||
""" AddRectWaveGuidePort(port_nr, start, stop, p_dir, a, b, mode_name, excite=0, **kw)
|
||||
|
||||
Add a rectilinear waveguide port.
|
||||
|
||||
See Also
|
||||
--------
|
||||
openEMS.ports.RectWGPort
|
||||
"""
|
||||
assert self.__CSX is not None, 'AddRectWaveGuidePort: CSX is not set!'
|
||||
return ports.RectWGPort(self.__CSX, port_nr, start, stop, p_dir, a, b, mode_name, excite, **kw)
|
||||
|
||||
def AddMSLPort(self, port_nr, metal_prop, start, stop, prop_dir, exc_dir, excite=0, **kw):
|
||||
""" AddMSLPort(port_nr, metal_prop, start, stop, prop_dir, exc_dir, excite=0, **kw)
|
||||
|
||||
Add a microstrip transmission line port.
|
||||
|
||||
See Also
|
||||
--------
|
||||
openEMS.ports.MSLPort
|
||||
"""
|
||||
assert self.__CSX is not None, 'AddMSLPort: CSX is not set!'
|
||||
return ports.MSLPort(self.__CSX, port_nr, metal_prop, start, stop, prop_dir, exc_dir, excite, **kw)
|
||||
|
||||
def CreateNF2FFBox(self, name='nf2ff', start=None, stop=None, **kw):
|
||||
""" CreateNF2FFBox(name='nf2ff', start=None, stop=None, **kw)
|
||||
|
||||
Create a near-field to far-field box.
|
||||
|
||||
This method will automatically adept the recording box to the current
|
||||
FDTD grid and boundary conditions.
|
||||
|
||||
Notes
|
||||
-----
|
||||
* Make sure the mesh grid and all boundary conditions are finially defined.
|
||||
|
||||
See Also
|
||||
--------
|
||||
openEMS.nf2ff.nf2ff
|
||||
"""
|
||||
assert self.__CSX is not None, 'CreateNF2FFBox: CSX is not set!'
|
||||
directions = [True]*6
|
||||
mirror = [0]*6
|
||||
BC_size = [0]*6
|
||||
BC_type = [0]*6
|
||||
for n in range(6):
|
||||
BC_type[n] = self.thisptr.Get_BC_Type(n)
|
||||
if BC_type[n]==0:
|
||||
directions[n]= False
|
||||
mirror[n] = 1 # PEC mirror
|
||||
elif BC_type[n]==1:
|
||||
directions[n]= False
|
||||
mirror[n] = 2 # PMC mirror
|
||||
elif BC_type[n]==2:
|
||||
BC_size[n] = 2
|
||||
elif BC_type[n]==3:
|
||||
BC_size[n] = self.thisptr.Get_PML_Size(n)+1
|
||||
|
||||
if start is None or stop is None:
|
||||
grid = self.__CSX.GetGrid()
|
||||
assert grid.IsValid(), 'Error::CreateNF2FFBox: Grid is invalid'
|
||||
start = np.zeros(3)
|
||||
stop = np.zeros(3)
|
||||
for n in range(3):
|
||||
l = grid.GetLines(n)
|
||||
BC_type = self.thisptr.Get_BC_Type(2*n)
|
||||
assert len(l)>(BC_size[2*n]+BC_size[2*n+1]), 'Error::CreateNF2FFBox: not enough lines in some direction'
|
||||
start[n] = l[BC_size[2*n]]
|
||||
stop[n] = l[-1*BC_size[2*n+1]-1]
|
||||
return nf2ff.nf2ff(self.__CSX, name, start, stop, directions=directions, mirror=mirror, **kw)
|
||||
|
||||
def SetCSX(self, ContinuousStructure CSX):
|
||||
""" SetCSX(CSX)
|
||||
|
||||
Set the CSXCAD Continuous Structure for CAD data handling.
|
||||
|
||||
See Also
|
||||
--------
|
||||
CSXCAD.ContinuousStructure
|
||||
"""
|
||||
self.__CSX = CSX
|
||||
self.thisptr.SetCSX(CSX.thisptr)
|
||||
|
||||
def GetCSX(self):
|
||||
return self.__CSX
|
||||
|
||||
def AddEdges2Grid(self, dirs, primitives=None, properties=None, **kw):
|
||||
""" AddEdges2Grid(primitives, dirs, **kw)
|
||||
|
||||
Add the edges of the given primitives to the FDTD grid.
|
||||
|
||||
:param dirs: primitives -- one or more primitives
|
||||
:param dirs: str -- 'x','y','z' or 'xy', 'yz' or 'xyz' or 'all'
|
||||
"""
|
||||
csx = self.GetCSX()
|
||||
if csx is None:
|
||||
raise Exception('AddEdges2Grid: Unable to access CSX!')
|
||||
prim_list = []
|
||||
if primitives is not None and type(primitives) is not list:
|
||||
prim_list.append(primitives)
|
||||
elif primitives is not None:
|
||||
prim_list += primitives
|
||||
|
||||
if properties is not None and type(properties) is not list:
|
||||
prim_list += properties.GetAllPrimitives()
|
||||
elif primitives is not None:
|
||||
for prop in properties:
|
||||
prim_list += prop.GetAllPrimitives()
|
||||
|
||||
grid = csx.GetGrid()
|
||||
for prim in prim_list:
|
||||
hint = automesh.mesh_hint_from_primitive(prim, dirs, **kw)
|
||||
if hint is None:
|
||||
continue
|
||||
for n in range(3):
|
||||
if hint[n] is None:
|
||||
continue
|
||||
grid.AddLine(n, hint[n])
|
||||
|
||||
def Run(self, sim_path, cleanup=False, setup_only=False, verbose=None):
|
||||
""" Run(sim_path, cleanup=False, setup_only=False, verbose=None)
|
||||
|
||||
Run the openEMS FDTD simulation.
|
||||
|
||||
:param sim_path: str -- path to run in and create result data
|
||||
:param cleanup: bool -- remove exisiting sim_path to cleanup old results
|
||||
:param setup_only: bool -- only perform FDTD setup, do not run simulation
|
||||
:param verbose: int -- set the openEMS verbosity level 0..3
|
||||
"""
|
||||
if cleanup and os.path.exists(sim_path):
|
||||
shutil.rmtree(sim_path)
|
||||
os.mkdir(sim_path)
|
||||
if not os.path.exists(sim_path):
|
||||
os.mkdir(sim_path)
|
||||
cwd = os.getcwd()
|
||||
os.chdir(sim_path)
|
||||
if verbose is not None:
|
||||
self.thisptr.SetVerboseLevel(verbose)
|
||||
assert os.getcwd() == sim_path
|
||||
_openEMS.WelcomeScreen()
|
||||
cdef int EC
|
||||
EC = self.thisptr.SetupFDTD()
|
||||
if EC!=0:
|
||||
print('Run: Setup failed, error code: {}'.format(EC))
|
||||
if setup_only or EC!=0:
|
||||
return EC
|
||||
self.thisptr.RunFDTD()
|
|
@ -0,0 +1,26 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
#
|
||||
# Copyright (C) 2015,20016 Thorsten Liebig (Thorsten.Liebig@gmx.de)
|
||||
#
|
||||
# This program is free software: you can redistribute it and/or modify
|
||||
# it under the terms of the GNU General Public License as published
|
||||
# by the Free Software Foundation, either version 3 of the License, or
|
||||
# (at your option) any later version.
|
||||
#
|
||||
# This program is distributed in the hope that it will be useful,
|
||||
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
# GNU General Public License for more details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License
|
||||
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
#
|
||||
|
||||
import numpy as np
|
||||
|
||||
C0 = 299792458 # m/s
|
||||
MUE0 = 4e-7*np.pi # N/A^2
|
||||
EPS0 = 1/(MUE0*C0**2) # F/m
|
||||
|
||||
# free space wave impedance
|
||||
Z0 = np.sqrt(MUE0/EPS0) # Ohm
|
|
@ -0,0 +1,433 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
#
|
||||
# Copyright (C) 2015,20016 Thorsten Liebig (Thorsten.Liebig@gmx.de)
|
||||
#
|
||||
# This program is free software: you can redistribute it and/or modify
|
||||
# it under the terms of the GNU General Public License as published
|
||||
# by the Free Software Foundation, either version 3 of the License, or
|
||||
# (at your option) any later version.
|
||||
#
|
||||
# This program is distributed in the hope that it will be useful,
|
||||
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
# GNU General Public License for more details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License
|
||||
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
#
|
||||
|
||||
import os
|
||||
import numpy as np
|
||||
from CSXCAD.Utilities import CheckNyDir
|
||||
from openEMS import utilities
|
||||
|
||||
from openEMS.physical_constants import *
|
||||
|
||||
class UI_data:
|
||||
def __init__(self, fns, path, freq, signal_type='pulse', **kw):
|
||||
self.path = path
|
||||
if type(fns)==str:
|
||||
fns = [fns]
|
||||
self.fns = fns
|
||||
|
||||
if np.isscalar(freq):
|
||||
freq = [freq]
|
||||
self.freq = freq
|
||||
|
||||
self.ui_time = []
|
||||
self.ui_val = []
|
||||
self.ui_f_val = []
|
||||
|
||||
for fn in fns:
|
||||
tmp = np.loadtxt(os.path.join(path, fn),comments='%')
|
||||
self.ui_time.append(tmp[:,0])
|
||||
self.ui_val.append(tmp[:,1])
|
||||
self.ui_f_val.append(utilities.DFT_time2freq(tmp[:,0], tmp[:,1], freq, signal_type=signal_type))
|
||||
|
||||
# Port Base-Class
|
||||
class Port:
|
||||
"""
|
||||
The port base class.
|
||||
|
||||
:param CSX: Continuous Structure
|
||||
:param port_nr: int -- port number
|
||||
:param R: float -- port reference impedance, e.g. 50 (Ohms)
|
||||
:param start, stop: (3,) array -- Start/Stop box coordinates
|
||||
:param p_dir: int -- port direction
|
||||
:param excite: float -- port excitation amplitude
|
||||
:param priority: int -- priority of all contained primtives
|
||||
:param PortNamePrefix: str -- a prefix for all ports-names
|
||||
:param delay: float -- a positiv delay value to e.g. emulate a phase shift
|
||||
"""
|
||||
def __init__(self, CSX, port_nr, start, stop, excite, **kw):
|
||||
self.CSX = CSX
|
||||
self.number = port_nr
|
||||
self.excite = excite
|
||||
self.start = np.array(start, np.float)
|
||||
self.stop = np.array(stop, np.float)
|
||||
self.Z_ref = None
|
||||
self.U_filenames = []
|
||||
self.I_filenames = []
|
||||
|
||||
self.priority = 0
|
||||
if 'priority' in kw:
|
||||
self.priority = kw['priority']
|
||||
|
||||
self.prefix = ''
|
||||
if 'PortNamePrefix' in kw:
|
||||
self.prefix = kw['PortNamePrefix']
|
||||
self.delay = 0
|
||||
|
||||
if 'delay' in kw:
|
||||
self.delay = kw['delay']
|
||||
|
||||
self.lbl_temp = self.prefix + 'port_{}' + '_{}'.format(self.number)
|
||||
|
||||
def ReadUIData(self, sim_path, freq, signal_type ='pulse'):
|
||||
self.u_data = UI_data(self.U_filenames, sim_path, freq, signal_type )
|
||||
self.uf_tot = 0
|
||||
self.ut_tot = 0
|
||||
for n in range(len(self.U_filenames)):
|
||||
self.uf_tot += self.u_data.ui_f_val[n]
|
||||
self.ut_tot += self.u_data.ui_val[n]
|
||||
|
||||
self.i_data = UI_data(self.I_filenames, sim_path, freq, signal_type )
|
||||
self.if_tot = 0
|
||||
self.it_tot = 0
|
||||
for n in range(len(self.U_filenames)):
|
||||
self.if_tot += self.i_data.ui_f_val[n]
|
||||
self.it_tot += self.i_data.ui_val[n]
|
||||
|
||||
|
||||
def CalcPort(self, sim_path, freq, ref_impedance=None, ref_plane_shift=None, signal_type='pulse'):
|
||||
self.ReadUIData(sim_path, freq, signal_type)
|
||||
|
||||
if ref_impedance is not None:
|
||||
self.Z_ref = ref_impedance
|
||||
assert self.Z_ref is not None
|
||||
|
||||
if ref_plane_shift is not None:
|
||||
assert hasattr(self, 'beta')
|
||||
shift = ref_plane_shift
|
||||
if self.measplane_shift:
|
||||
shift -= self.measplane_shift
|
||||
shift *= self.CSX.GetGrid().GetDeltaUnit()
|
||||
phase = np.real(self.beta)*shift
|
||||
uf_tot = self.uf_tot * np.cos(-phase) + 1j * self.if_tot * self.Z_ref * np.sin(-phase)
|
||||
if_tot = self.if_tot * np.cos(-phase) + 1j * self.uf_tot / self.Z_ref * np.sin(-phase)
|
||||
self.uf_tot = uf_tot
|
||||
self.if_tot = if_tot
|
||||
|
||||
self.uf_inc = 0.5 * ( self.uf_tot + self.if_tot * self.Z_ref )
|
||||
self.if_inc = 0.5 * ( self.if_tot + self.uf_tot / self.Z_ref )
|
||||
self.uf_ref = self.uf_tot - self.uf_inc
|
||||
self.if_ref = self.if_inc - self.if_tot
|
||||
|
||||
if type(self.Z_ref) == float:
|
||||
self.ut_inc = 0.5 * ( self.ut_tot + self.it_tot * self.Z_ref )
|
||||
self.it_inc = 0.5 * ( self.it_tot + self.ut_tot / self.Z_ref )
|
||||
self.ut_ref = self.ut_tot - self.ut_inc
|
||||
self.it_ref = self.it_inc - self.it_tot
|
||||
|
||||
# calc some more port parameter
|
||||
# incoming power
|
||||
self.P_inc = 0.5*np.real(self.uf_inc*np.conj(self.if_inc))
|
||||
# reflected power
|
||||
self.P_ref = 0.5*np.real(self.uf_ref*np.conj(self.if_ref))
|
||||
# accepted power (incoming - reflected)
|
||||
self.P_acc = 0.5*np.real(self.uf_tot*np.conj(self.if_tot))
|
||||
|
||||
class LumpedPort(Port):
|
||||
"""
|
||||
The lumped port.
|
||||
|
||||
See Also
|
||||
--------
|
||||
Port
|
||||
"""
|
||||
def __init__(self, CSX, port_nr, R, start, stop, exc_dir, excite=0, **kw):
|
||||
super(LumpedPort, self).__init__(CSX, port_nr=port_nr, start=start, stop=stop, excite=excite, **kw)
|
||||
self.R = R
|
||||
self.exc_ny = CheckNyDir(exc_dir)
|
||||
|
||||
self.direction = np.sign(self.stop[self.exc_ny]-self.start[self.exc_ny])
|
||||
assert self.start[self.exc_ny]!=self.stop[self.exc_ny], 'LumpedPort: start and stop may not be identical in excitation direction'
|
||||
|
||||
if self.R > 0:
|
||||
lumped_R = CSX.AddLumpedElement(self.lbl_temp.format('resist'), ny=self.exc_ny, caps=True, R=self.R)
|
||||
elif self.R==0:
|
||||
lumped_R = CSX.AddMetal(self.lbl_temp.format('resist'))
|
||||
|
||||
lumped_R.AddBox(self.start, self.stop, priority=self.priority)
|
||||
|
||||
if excite!=0:
|
||||
exc_vec = np.zeros(3)
|
||||
exc_vec[self.exc_ny] = -1*self.direction*excite
|
||||
exc = CSX.AddExcitation(self.lbl_temp.format('excite'), exc_type=0, exc_val=exc_vec, delay=self.delay)
|
||||
exc.AddBox(self.start, self.stop, priority=self.priority)
|
||||
|
||||
self.U_filenames = [self.lbl_temp.format('ut'), ]
|
||||
u_start = 0.5*(self.start+self.stop)
|
||||
u_start[self.exc_ny] = self.start[self.exc_ny]
|
||||
u_stop = 0.5*(self.start+self.stop)
|
||||
u_stop[self.exc_ny] = self.stop[self.exc_ny]
|
||||
u_probe = CSX.AddProbe(self.U_filenames[0], p_type=0, weight=-1*self.direction)
|
||||
u_probe.AddBox(u_start, u_stop)
|
||||
|
||||
self.I_filenames = [self.lbl_temp.format('it'), ]
|
||||
i_start = np.array(self.start)
|
||||
i_start[self.exc_ny] = 0.5*(self.start[self.exc_ny]+self.stop[self.exc_ny])
|
||||
i_stop = np.array(self.stop)
|
||||
i_stop[self.exc_ny] = 0.5*(self.start[self.exc_ny]+self.stop[self.exc_ny])
|
||||
i_probe = CSX.AddProbe(self.I_filenames[0], p_type=1, weight=self.direction, norm_dir=self.exc_ny)
|
||||
i_probe.AddBox(i_start, i_stop)
|
||||
|
||||
def CalcPort(self, sim_path, freq, ref_impedance=None, ref_plane_shift=None, signal_type='pulse'):
|
||||
if ref_impedance is None:
|
||||
self.Z_ref = self.R
|
||||
if ref_plane_shift is not None:
|
||||
Warning('A lumped port does not support a reference plane shift! Ignoring...')
|
||||
super(LumpedPort, self).CalcPort(sim_path, freq, ref_impedance, ref_plane_shift, signal_type)
|
||||
|
||||
class MSLPort(Port):
|
||||
"""
|
||||
The microstrip transmission line port.
|
||||
|
||||
:param prop_dir: int/str -- direction of propagation
|
||||
|
||||
See Also
|
||||
--------
|
||||
Port
|
||||
"""
|
||||
def __init__(self, CSX, port_nr, metal_prop, start, stop, prop_dir, exc_dir, excite=0, **kw):
|
||||
super(MSLPort, self).__init__(CSX, port_nr=port_nr, start=start, stop=stop, excite=excite, **kw)
|
||||
self.exc_ny = CheckNyDir(exc_dir)
|
||||
self.prop_ny = CheckNyDir(prop_dir)
|
||||
self.direction = np.sign(stop[self.prop_ny]-start[self.prop_ny])
|
||||
self.upside_down = np.sign(stop[self.exc_ny] -start[self.exc_ny])
|
||||
assert (self.start!=self.stop).all()
|
||||
# assert stop[self.prop_ny]!=start[self.prop_ny], 'port length in propergation direction may not be zero!'
|
||||
# assert stop[self.exc_ny] !=start[self.exc_ny], 'port length in propergation direction may not be zero!'
|
||||
assert self.exc_ny!=self.prop_ny
|
||||
|
||||
self.feed_shift = 0
|
||||
if 'FeedShift' in kw:
|
||||
self.feed_shift = kw['FeedShift']
|
||||
self.measplane_shift = 0.5*np.abs(self.start[self.prop_ny]-self.stop[self.prop_ny])
|
||||
if 'MeasPlaneShift' in kw:
|
||||
self.measplane_shift = kw['MeasPlaneShift']
|
||||
self.measplane_pos = self.start[self.prop_ny] + self.measplane_shift*self.direction
|
||||
self.feed_R = np.inf
|
||||
if 'Feed_R' in kw:
|
||||
self.feed_R = kw['Feed_R']
|
||||
|
||||
# add metal msl-plane
|
||||
MSL_start = np.array(self.start)
|
||||
MSL_stop = np.array(self.stop)
|
||||
MSL_stop[self.exc_ny] = MSL_start[self.exc_ny]
|
||||
metal_prop.AddBox(MSL_start, MSL_stop, priority=self.priority )
|
||||
|
||||
mesh = CSX.GetGrid()
|
||||
prop_lines = mesh.GetLines(self.prop_ny)
|
||||
assert len(prop_lines)>5, 'At least 5 lines in propagation direction required!'
|
||||
meas_pos_idx = np.argmin(np.abs(prop_lines-self.measplane_pos))
|
||||
if meas_pos_idx==0:
|
||||
meas_pos_idx=1
|
||||
if meas_pos_idx>=len(prop_lines)-1:
|
||||
meas_pos_idx=len(prop_lines)-2
|
||||
self.measplane_shift = np.abs(self.start[self.prop_ny]-prop_lines[meas_pos_idx])
|
||||
prope_idx = np.array([meas_pos_idx-1, meas_pos_idx, meas_pos_idx+1], np.int)
|
||||
if self.direction<0:
|
||||
prope_idx = np.flipud(prope_idx)
|
||||
u_prope_pos = prop_lines[prope_idx]
|
||||
self.U_filenames = []
|
||||
self.U_delta = np.diff(u_prope_pos)
|
||||
suffix = ['A', 'B', 'C']
|
||||
for n in range(len(prope_idx)):
|
||||
u_start = 0.5*(self.start+self.stop)
|
||||
u_stop = 0.5*(self.start+self.stop)
|
||||
u_start[self.prop_ny] = u_prope_pos[n]
|
||||
u_stop[self.prop_ny] = u_prope_pos[n]
|
||||
u_start[self.exc_ny] = self.start[self.exc_ny]
|
||||
u_stop[self.exc_ny] = self.stop [self.exc_ny]
|
||||
u_name = self.lbl_temp.format('ut') + suffix[n]
|
||||
self.U_filenames.append(u_name)
|
||||
u_probe = CSX.AddProbe(u_name, p_type=0, weight=self.upside_down)
|
||||
u_probe.AddBox(u_start, u_stop)
|
||||
|
||||
i_prope_pos = u_prope_pos[0:2] + np.diff(u_prope_pos)/2.0
|
||||
self.I_filenames = []
|
||||
self.I_delta = np.diff(i_prope_pos)
|
||||
i_start = np.array(self.start)
|
||||
i_stop = np.array(self.stop)
|
||||
i_stop[self.exc_ny] = self.start[self.exc_ny]
|
||||
for n in range(len(i_prope_pos)):
|
||||
i_start[self.prop_ny] = i_prope_pos[n]
|
||||
i_stop[self.prop_ny] = i_prope_pos[n]
|
||||
i_name = self.lbl_temp.format('it') + suffix[n]
|
||||
self.I_filenames.append(i_name)
|
||||
i_probe = CSX.AddProbe(i_name, p_type=1, weight=self.direction, norm_dir=self.prop_ny)
|
||||
i_probe.AddBox(i_start, i_stop)
|
||||
|
||||
if excite!=0:
|
||||
excide_pos_idx = np.argmin(np.abs(prop_lines-(self.start[self.prop_ny] + self.feed_shift*self.direction)))
|
||||
exc_start = np.array(self.start)
|
||||
exc_stop = np.array(self.stop)
|
||||
exc_start[self.prop_ny] = prop_lines[excide_pos_idx]
|
||||
exc_stop [self.prop_ny] = prop_lines[excide_pos_idx]
|
||||
exc_vec = np.zeros(3)
|
||||
exc_vec[self.exc_ny] = -1*self.upside_down*excite
|
||||
exc = CSX.AddExcitation(self.lbl_temp.format('excite'), exc_type=0, exc_val=exc_vec, delay=self.delay)
|
||||
exc.AddBox(exc_start, exc_stop, priority=self.priority)
|
||||
|
||||
if self.feed_R>=0 and not np.isinf(self.feed_R):
|
||||
R_start = np.array(self.start)
|
||||
R_stop = np.array(self.stop)
|
||||
R_stop [self.prop_ny] = R_start[self.prop_ny]
|
||||
if self.feed_R==0:
|
||||
metal_prop.AddBox(R_start, R_stop)
|
||||
else:
|
||||
lumped_R = CSX.AddLumpedElement(self.lbl_temp.format('resist'), ny=self.exc_ny, caps=True, R=self.feed_R)
|
||||
lumped_R.AddBox(R_start, R_stop)
|
||||
|
||||
def ReadUIData(self, sim_path, freq, signal_type ='pulse'):
|
||||
self.u_data = UI_data(self.U_filenames, sim_path, freq, signal_type )
|
||||
self.uf_tot = self.u_data.ui_f_val[1]
|
||||
|
||||
self.i_data = UI_data(self.I_filenames, sim_path, freq, signal_type )
|
||||
self.if_tot = 0.5*(self.i_data.ui_f_val[0]+self.i_data.ui_f_val[1])
|
||||
|
||||
unit = self.CSX.GetGrid().GetDeltaUnit()
|
||||
Et = self.u_data.ui_f_val[1]
|
||||
dEt = (self.u_data.ui_f_val[2] - self.u_data.ui_f_val[0]) / (np.sum(np.abs(self.U_delta)) * unit)
|
||||
Ht = self.if_tot # space averaging: Ht is now defined at the same pos as Et
|
||||
dHt = (self.i_data.ui_f_val[1] - self.i_data.ui_f_val[0]) / (np.abs(self.I_delta[0]) * unit)
|
||||
|
||||
beta = np.sqrt( - dEt * dHt / (Ht * Et) )
|
||||
beta[np.real(beta) < 0] *= -1 # determine correct sign (unlike the paper)
|
||||
self.beta = beta
|
||||
|
||||
# determine ZL
|
||||
self.Z_ref = np.sqrt(Et * dEt / (Ht * dHt))
|
||||
|
||||
class WaveguidePort(Port):
|
||||
"""
|
||||
Base class for any waveguide port.
|
||||
|
||||
See Also
|
||||
--------
|
||||
Port, RectWGPort
|
||||
|
||||
"""
|
||||
def __init__(self, CSX, port_nr, start, stop, exc_dir, E_WG_func, H_WG_func, kc, excite=0, **kw):
|
||||
super(WaveguidePort, self).__init__(CSX, port_nr=port_nr, start=start, stop=stop, excite=excite, **kw)
|
||||
self.exc_ny = CheckNyDir(exc_dir)
|
||||
self.ny_P = (self.exc_ny+1)%3
|
||||
self.ny_PP = (self.exc_ny+2)%3
|
||||
self.direction = np.sign(stop[self.exc_ny]-start[self.exc_ny])
|
||||
self.ref_index = 1
|
||||
|
||||
assert not (self.excite!=0 and stop[self.exc_ny]==start[self.exc_ny]), 'port length in excitation direction may not be zero if port is excited!'
|
||||
|
||||
self.kc = kc
|
||||
self.E_func = E_WG_func
|
||||
self.H_func = H_WG_func
|
||||
|
||||
if excite!=0:
|
||||
e_start = np.array(start)
|
||||
e_stop = np.array(stop)
|
||||
e_stop[self.exc_ny] = e_start[self.exc_ny]
|
||||
e_vec = np.ones(3)
|
||||
e_vec[self.exc_ny]=0
|
||||
exc = CSX.AddExcitation(self.lbl_temp.format('excite'), exc_type=0, exc_val=e_vec, delay=self.delay)
|
||||
exc.SetWeightFunction([str(x) for x in self.E_func])
|
||||
exc.AddBox(e_start, e_stop, priority=self.priority)
|
||||
|
||||
# voltage/current planes
|
||||
m_start = np.array(start)
|
||||
m_stop = np.array(stop)
|
||||
m_start[self.exc_ny] = m_stop[self.exc_ny]
|
||||
self.measplane_shift = np.abs(stop[self.exc_ny] - start[self.exc_ny])
|
||||
|
||||
self.U_filenames = [self.lbl_temp.format('ut'), ]
|
||||
|
||||
u_probe = CSX.AddProbe(self.U_filenames[0], p_type=10, mode_function=self.E_func)
|
||||
u_probe.AddBox(m_start, m_stop)
|
||||
|
||||
self.I_filenames = [self.lbl_temp.format('it'), ]
|
||||
i_probe = CSX.AddProbe(self.I_filenames[0], p_type=11, weight=self.direction, mode_function=self.H_func)
|
||||
i_probe.AddBox(m_start, m_stop)
|
||||
|
||||
|
||||
def CalcPort(self, sim_path, freq, ref_impedance=None, ref_plane_shift=None, signal_type='pulse'):
|
||||
k = 2.0*np.pi*freq/C0*self.ref_index
|
||||
self.beta = np.sqrt(k**2 - self.kc**2)
|
||||
self.ZL = k * Z0 / self.beta #analytic waveguide impedance
|
||||
if ref_impedance is None:
|
||||
self.Z_ref = self.ZL
|
||||
super(WaveguidePort, self).CalcPort(sim_path, freq, ref_impedance, ref_plane_shift, signal_type)
|
||||
|
||||
class RectWGPort(WaveguidePort):
|
||||
"""
|
||||
Rectangular waveguide port.
|
||||
|
||||
:param a,b: float -- Width/Height of rectangular waveguide port
|
||||
|
||||
See Also
|
||||
--------
|
||||
Port, WaveguidePort
|
||||
|
||||
"""
|
||||
def __init__(self, CSX, port_nr, start, stop, exc_dir, a, b, mode_name, excite=0, **kw):
|
||||
Port.__init__(self, CSX, port_nr, start, stop, excite=0, **kw)
|
||||
self.exc_ny = CheckNyDir(exc_dir)
|
||||
self.ny_P = (self.exc_ny+1)%3
|
||||
self.ny_PP = (self.exc_ny+2)%3
|
||||
self.WG_size = [a, b]
|
||||
|
||||
self.WG_mode = mode_name
|
||||
assert len(self.WG_mode)==4, 'Invalid mode definition'
|
||||
self.unit = self.CSX.GetGrid().GetDeltaUnit()
|
||||
if self.WG_mode.startswith('TE'):
|
||||
self.TE = True
|
||||
self.TM = False
|
||||
else:
|
||||
self.TE = False
|
||||
self.TM = True
|
||||
self.M = float(self.WG_mode[2])
|
||||
self.N = float(self.WG_mode[3])
|
||||
|
||||
assert self.TE, 'Currently only TE-modes are supported! Mode found: {}'.format(self.WG_mode)
|
||||
|
||||
# values by David M. Pozar, Microwave Engineering, third edition
|
||||
a = self.WG_size[0]
|
||||
b = self.WG_size[1]
|
||||
|
||||
xyz = 'xyz'
|
||||
if self.start[self.ny_P]!=0:
|
||||
name_P = '({}-{})'.format(xyz[self.ny_P], self.start[self.ny_P])
|
||||
else:
|
||||
name_P = xyz[self.ny_P]
|
||||
if self.start[self.ny_PP]!=0:
|
||||
name_PP = '({}-{})'.format(xyz[self.ny_P], self.start[self.ny_P])
|
||||
else:
|
||||
name_PP = xyz[self.ny_P]
|
||||
|
||||
kc = np.sqrt((self.M*np.pi/a)**2 + (self.N*np.pi/b)**2)
|
||||
|
||||
a /= self.unit
|
||||
b /= self.unit
|
||||
E_func = [0,0,0]
|
||||
H_func = [0,0,0]
|
||||
if self.N>0:
|
||||
E_func[self.ny_P] = '{}*cos({}*{})*sin({}*{})'.format(self.N/b , self.M*np.pi/a, name_P, self.N*np.pi/b, name_PP)
|
||||
if self.M>0:
|
||||
E_func[self.ny_PP] = '{}*sin({}*{})*cos({}*{})'.format(-1*self.M/a, self.M*np.pi/a, name_P, self.N*np.pi/b, name_PP)
|
||||
|
||||
if self.M>0:
|
||||
H_func[self.ny_P] = '{}*sin({}*{})*cos({}*{})'.format(self.M/a, self.M*np.pi/a, name_P, self.N*np.pi/b, name_PP)
|
||||
if self.N>0:
|
||||
H_func[self.ny_PP] = '{}*cos({}*{})*sin({}*{})'.format(self.N/b, self.M*np.pi/a, name_P, self.N*np.pi/b, name_PP)
|
||||
|
||||
super(RectWGPort, self).__init__(CSX, port_nr=port_nr, start=start, stop=stop, exc_dir=exc_dir, E_WG_func=E_func, H_WG_func=H_func, kc=kc, excite=excite, **kw)
|
||||
|
|
@ -0,0 +1,66 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
#
|
||||
# Copyright (C) 2015,20016 Thorsten Liebig (Thorsten.Liebig@gmx.de)
|
||||
#
|
||||
# This program is free software: you can redistribute it and/or modify
|
||||
# it under the terms of the GNU General Public License as published
|
||||
# by the Free Software Foundation, either version 3 of the License, or
|
||||
# (at your option) any later version.
|
||||
#
|
||||
# This program is distributed in the hope that it will be useful,
|
||||
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
# GNU General Public License for more details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License
|
||||
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
#
|
||||
|
||||
import numpy as np
|
||||
|
||||
def DFT_time2freq( t, val, freq, signal_type='pulse'):
|
||||
assert len(t)==len(val)
|
||||
assert len(freq)>0
|
||||
f_val = np.zeros(len(freq))*1j
|
||||
for n_f in range(len(freq)):
|
||||
f_val[n_f] = np.sum( val*np.exp( -1j*2*np.pi*freq[n_f] * t ) )
|
||||
|
||||
if signal_type == 'pulse':
|
||||
f_val *= t[1]-t[0]
|
||||
elif signal_type == 'periodic':
|
||||
f_val /= len(t)
|
||||
else:
|
||||
raise Exception('Unknown signal type: "{}"'.format(signal_type))
|
||||
|
||||
return 2*f_val # single-sided spectrum
|
||||
|
||||
def Check_Array_Equal(a,b, tol, relative=False):
|
||||
a = np.array(a)
|
||||
b = np.array(b)
|
||||
if a.shape!=b.shape:
|
||||
return False
|
||||
if tol==0:
|
||||
return (a==b).all()
|
||||
if relative:
|
||||
d = np.abs((a-b)/a)
|
||||
else:
|
||||
d = np.abs((a-b))
|
||||
return np.max(d)<tol
|
||||
|
||||
if __name__=="__main__":
|
||||
import pylab as plt
|
||||
|
||||
t = np.linspace(0,2,201)
|
||||
|
||||
s = np.sin(2*np.pi*2*t)
|
||||
plt.plot(t,s)
|
||||
|
||||
f = np.linspace(0,3,101)
|
||||
sf = DFT_time2freq(t, s, f, 'periodic')
|
||||
|
||||
plt.figure()
|
||||
plt.plot(f, np.abs(sf))
|
||||
|
||||
plt.show()
|
||||
|
||||
|
|
@ -0,0 +1,47 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Sun Dec 13 23:48:22 2015
|
||||
|
||||
@author: thorsten
|
||||
"""
|
||||
|
||||
from distutils.core import setup
|
||||
from distutils.extension import Extension
|
||||
from Cython.Build import cythonize
|
||||
|
||||
import os, sys
|
||||
ROOT_DIR = os.path.dirname(__file__)
|
||||
|
||||
sys.path.append(os.path.join(ROOT_DIR,'..','..','CSXCAD','python'))
|
||||
|
||||
extensions = [
|
||||
Extension("*", [os.path.join(os.path.dirname(__file__), "openEMS","*.pyx")],
|
||||
language="c++", # generate C++ code
|
||||
libraries = ['CSXCAD','openEMS', 'nf2ff']),
|
||||
]
|
||||
|
||||
setup(
|
||||
name="openEMS",
|
||||
version = '0.0.33',
|
||||
description = "Python interface for the openEMS FDTD library",
|
||||
classifiers = [
|
||||
'Development Status :: 3 - Alpha',
|
||||
'Intended Audience :: Developers',
|
||||
'Intended Audience :: Information Technology',
|
||||
'Intended Audience :: Science/Research',
|
||||
'License :: OSI Approved :: GNU General Public License v3 or later (GPLv3+)',
|
||||
'Programming Language :: Python',
|
||||
'Topic :: Scientific/Engineering',
|
||||
'Topic :: Software Development :: Libraries :: Python Modules',
|
||||
'Operating System :: POSIX :: Linux',
|
||||
'Operating System :: Microsoft :: Windows',
|
||||
],
|
||||
author = 'Thorsten Liebig',
|
||||
author_email = 'Thorsten.Liebig@gmx.de',
|
||||
maintainer = 'Thorsten Liebig',
|
||||
maintainer_email = 'Thorsten.Liebig@gmx.de',
|
||||
url = 'http://openEMS.de',
|
||||
packages=["openEMS", ],
|
||||
package_data={'openEMS': ['*.pxd']},
|
||||
ext_modules = cythonize(extensions)
|
||||
)
|