diff --git a/matlab/Tutorials/CylindricalWave_CC.m b/matlab/Tutorials/CylindricalWave_CC.m index d55c470..b81d2d4 100644 --- a/matlab/Tutorials/CylindricalWave_CC.m +++ b/matlab/Tutorials/CylindricalWave_CC.m @@ -28,7 +28,7 @@ exite_offset = 1300; excite_angle = 45; %% setup FDTD parameter & excitation function %%%%%%%%%%%%%%%%%%%%%%%%%%%%% -FDTD = InitFDTD(100000,1e-4,'CoordSystem',1,'MultiGrid',split); +FDTD = InitFDTD('NrTS', 100000, 'EndCriteria', 1e-4, 'CoordSystem', 1, 'MultiGrid', split); FDTD = SetGaussExcite(FDTD,f0,f0/2); BC = [0 3 0 0 0 0]; % pml in positive r-direction FDTD = SetBoundaryCond(FDTD,BC); diff --git a/matlab/Tutorials/Simple_Patch_Antenna.m b/matlab/Tutorials/Simple_Patch_Antenna.m index 4276ae6..1e24c4c 100644 --- a/matlab/Tutorials/Simple_Patch_Antenna.m +++ b/matlab/Tutorials/Simple_Patch_Antenna.m @@ -1,20 +1,20 @@ -% -% Tutorials / simple patch antenna +%% Simple Patch Antenna Tutorial % % Describtion at: -% http://openems.de/index.php/Tutorial:_Simple_Patch_Antenna +% % % Tested with % - Matlab 2013a / Octave 4.0 -% - openEMS v0.0.33 +% - openEMS v0.0.35 % -% (C) 2010-2015 Thorsten Liebig +% (C) 2010-2017 Thorsten Liebig +%% close all clear clc -%% setup the simulation +%% Setup the Simulation physical_constants; unit = 1e-3; % all length in mm @@ -38,7 +38,7 @@ feed.R = 50; %feed resistance % size of the simulation box SimBox = [200 200 150]; -%% setup FDTD parameter & excitation function +%% Setup FDTD Parameter & Excitation Function f0 = 2e9; % center frequency fc = 1e9; % 20 dB corner frequency FDTD = InitFDTD( 'NrTs', 30000 ); @@ -46,7 +46,7 @@ FDTD = SetGaussExcite( FDTD, f0, fc ); BC = {'MUR' 'MUR' 'MUR' 'MUR' 'MUR' 'MUR'}; % boundary conditions FDTD = SetBoundaryCond( FDTD, BC ); -%% setup CSXCAD geometry & mesh +%% Setup CSXCAD Geometry & Mesh CSX = InitCSX(); %initialize the mesh with the "air-box" dimensions @@ -54,13 +54,13 @@ mesh.x = [-SimBox(1)/2 SimBox(1)/2]; mesh.y = [-SimBox(2)/2 SimBox(2)/2]; mesh.z = [-SimBox(3)/3 SimBox(3)*2/3]; -%% create patch +% Create Patch CSX = AddMetal( CSX, 'patch' ); % create a perfect electric conductor (PEC) start = [-patch.width/2 -patch.length/2 substrate.thickness]; stop = [ patch.width/2 patch.length/2 substrate.thickness]; CSX = AddBox(CSX,'patch',10,start,stop); % add a box-primitive to the metal property 'patch' -%% create substrate +% Create Substrate CSX = AddMaterial( CSX, 'substrate' ); CSX = SetMaterialProperty( CSX, 'substrate', 'Epsilon', substrate.epsR, 'Kappa', substrate.kappa ); start = [-substrate.width/2 -substrate.length/2 0]; @@ -70,18 +70,18 @@ CSX = AddBox( CSX, 'substrate', 0, start, stop ); % add extra cells to discretize the substrate thickness mesh.z = [linspace(0,substrate.thickness,substrate.cells+1) mesh.z]; -%% create ground (same size as substrate) +% Create Ground same size as substrate CSX = AddMetal( CSX, 'gnd' ); % create a perfect electric conductor (PEC) start(3)=0; stop(3) =0; CSX = AddBox(CSX,'gnd',10,start,stop); -%% apply the excitation & resist as a current source +% Apply the Excitation & Resist as a Current Source start = [feed.pos 0 0]; stop = [feed.pos 0 substrate.thickness]; [CSX port] = AddLumpedPort(CSX, 5 ,1 ,feed.R, start, stop, [0 0 1], true); -%% finalize the mesh +% Finalize the Mesh % detect all edges except of the patch mesh = DetectEdges(CSX, mesh,'ExcludeProperty','patch'); % detect and set a special 2D metal edge mesh for the patch @@ -90,28 +90,32 @@ mesh = DetectEdges(CSX, mesh,'SetProperty','patch','2D_Metal_Edge_Res', c0/(f0+f mesh = SmoothMesh(mesh, c0/(f0+fc)/unit/20); CSX = DefineRectGrid(CSX, unit, mesh); -%% add a nf2ff calc box; size is 3 cells away from MUR boundary condition +CSX = AddDump(CSX,'Hf', 'DumpType', 11, 'Frequency',[2.4e9]); +CSX = AddBox(CSX,'Hf',10,[-substrate.width -substrate.length -10*substrate.thickness],[substrate.width +substrate.length 10*substrate.thickness]); %assign box + +% add a nf2ff calc box; size is 3 cells away from MUR boundary condition start = [mesh.x(4) mesh.y(4) mesh.z(4)]; stop = [mesh.x(end-3) mesh.y(end-3) mesh.z(end-3)]; [CSX nf2ff] = CreateNF2FFBox(CSX, 'nf2ff', start, stop); -%% prepare simulation folder +%% Prepare and Run Simulation Sim_Path = 'tmp_Patch_Ant'; Sim_CSX = 'patch_ant.xml'; +% create an empty working directory [status, message, messageid] = rmdir( Sim_Path, 's' ); % clear previous directory [status, message, messageid] = mkdir( Sim_Path ); % create empty simulation folder -%% write openEMS compatible xml-file +% write openEMS compatible xml-file WriteOpenEMS( [Sim_Path '/' Sim_CSX], FDTD, CSX ); -%% show the structure +% show the structure CSXGeomPlot( [Sim_Path '/' Sim_CSX] ); -%% run openEMS +% run openEMS RunOpenEMS( Sim_Path, Sim_CSX); -%% postprocessing & do the plots +%% Postprocessing & Plots freq = linspace( max([1e9,f0-fc]), f0+fc, 501 ); port = calcPort(port, Sim_Path, freq); @@ -142,7 +146,7 @@ ylabel( 'reflection coefficient |S_{11}|' ); drawnow -%% NFFF contour plots %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%% NFFF Plots %find resonance frequncy from s11 f_res_ind = find(s11==min(s11)); f_res = freq(f_res_ind); @@ -169,7 +173,7 @@ plotFFdB(nf2ff,'xaxis','theta','param',[1 2]) drawnow -%% +% Show 3D pattern disp( 'calculating 3D far field pattern and dumping to vtk (use Paraview to visualize)...' ); thetaRange = (0:2:180); phiRange = (0:2:360) - 180;