153 lines
3.7 KiB
Matlab
153 lines
3.7 KiB
Matlab
|
function pass = cavity
|
||
|
|
||
|
physical_constants;
|
||
|
|
||
|
|
||
|
ENABLE_PLOTS = 1;
|
||
|
CLEANUP = 0; % if enabled and result is PASS, remove simulation folder
|
||
|
STOP_IF_FAILED = 1; % if enabled and result is FAILED, stop with error
|
||
|
|
||
|
% LIMITS
|
||
|
upper_error = 0.036; % max +3.6%
|
||
|
lower_error = 0; % max -0.0%
|
||
|
|
||
|
% structure
|
||
|
a = 5e-2;
|
||
|
b = 2e-2;
|
||
|
d = 6e-2;
|
||
|
if ~((b<a) && (a<d))
|
||
|
error 'correct the dimensions of the cavity'
|
||
|
end
|
||
|
|
||
|
f_start = 0;
|
||
|
f_stop = 10e9;
|
||
|
|
||
|
Sim_Path = 'tmp';
|
||
|
Sim_CSX = 'cavity.xml';
|
||
|
|
||
|
[status,message,messageid]=mkdir(Sim_Path);
|
||
|
|
||
|
%setup FDTD parameter
|
||
|
FDTD = InitFDTD( 10000,1e-6 );
|
||
|
FDTD = SetGaussExcite(FDTD,(f_stop-f_start)/2,(f_stop-f_start)/2);
|
||
|
BC = [0 0 0 0 0 0]; % PEC boundaries
|
||
|
FDTD = SetBoundaryCond(FDTD,BC);
|
||
|
|
||
|
%setup CSXCAD geometry
|
||
|
CSX = InitCSX();
|
||
|
mesh.x = linspace(0,a,35);
|
||
|
mesh.y = linspace(0,b,35);
|
||
|
mesh.z = linspace(0,d,35);
|
||
|
CSX = DefineRectGrid(CSX, 1,mesh);
|
||
|
|
||
|
% excitation
|
||
|
pos1 = [mesh.x(10) mesh.y(10) mesh.z(10)];
|
||
|
pos2 = [mesh.x(10) mesh.y(11) mesh.z(10)];
|
||
|
CSX = AddExcitation(CSX,'excite',1,[0 1 0]);
|
||
|
CSX = AddBox(CSX, 'excite', 1, pos1, pos2);
|
||
|
|
||
|
% %dump
|
||
|
% CSX = AddDump(CSX,'Et_',0,2);
|
||
|
% pos1 = [mesh.x(1) mesh.y(10) mesh.z(1)];
|
||
|
% pos2 = [mesh.x(end) mesh.y(10) mesh.z(end)];
|
||
|
% CSX = AddBox(CSX,'Et_',0 , pos1,pos2);
|
||
|
%
|
||
|
% %dump
|
||
|
% CSX = AddDump(CSX,'Et2_',0,2);
|
||
|
% pos1 = [mesh.x(1) mesh.y(1) mesh.z(1)];
|
||
|
% pos2 = [mesh.x(end) mesh.y(1) mesh.z(end)];
|
||
|
% CSX = AddBox(CSX,'Et2_',0 , pos1,pos2);
|
||
|
%
|
||
|
% %dump
|
||
|
% CSX = AddDump(CSX,'Et3_',0,2);
|
||
|
% pos1 = [mesh.x(1) mesh.y(end-1) mesh.z(1)];
|
||
|
% pos2 = [mesh.x(end) mesh.y(end-1) mesh.z(end)];
|
||
|
% CSX = AddBox(CSX,'Et3_',0 , pos1,pos2);
|
||
|
|
||
|
%voltage calc
|
||
|
pos1 = [mesh.x(15) mesh.y(15) mesh.z(15)];
|
||
|
pos2 = [mesh.x(15) mesh.y(16) mesh.z(15)];
|
||
|
CSX = AddProbe(CSX,'ut1y',0);
|
||
|
CSX = AddBox(CSX,'ut1y', 0 ,pos1,pos2);
|
||
|
pos1 = [mesh.x(floor(end/2)) mesh.y(floor(end/2)) mesh.z(end)];
|
||
|
pos2 = [mesh.x(floor(end/2)) mesh.y(floor(end/2)) mesh.z(end-1)];
|
||
|
CSX = AddProbe(CSX,'ut1z',0);
|
||
|
CSX = AddBox(CSX,'ut1z', 0 ,pos1,pos2);
|
||
|
|
||
|
%Write openEMS compatible xml-file
|
||
|
WriteOpenEMS([Sim_Path '/' Sim_CSX],FDTD,CSX);
|
||
|
|
||
|
%cd to working dir and run openEMS
|
||
|
savePath = pwd();
|
||
|
cd(Sim_Path); %cd to working dir
|
||
|
invoke_openEMS( Sim_CSX );
|
||
|
UI = ReadUI( {'ut1x', 'ut1y', 'ut1z'} );
|
||
|
cd(savePath);
|
||
|
|
||
|
|
||
|
|
||
|
%
|
||
|
% analysis
|
||
|
%
|
||
|
|
||
|
f = UI.FD{1}.f;
|
||
|
ux = UI.FD{1}.val;
|
||
|
uy = UI.FD{2}.val;
|
||
|
uz = UI.FD{3}.val;
|
||
|
|
||
|
f_idx_start = interp1( f, 1:numel(f), f_start, 'nearest' );
|
||
|
f_idx_stop = interp1( f, 1:numel(f), f_stop, 'nearest' );
|
||
|
f = f(f_idx_start:f_idx_stop);
|
||
|
ux = ux(f_idx_start:f_idx_stop);
|
||
|
uy = uy(f_idx_start:f_idx_stop);
|
||
|
uz = uz(f_idx_start:f_idx_stop);
|
||
|
|
||
|
% analytic formula for resonant wavenumber
|
||
|
k = @(m,n,l) sqrt( (m*pi/a)^2 + (n*pi/b)^2 + (l*pi/d)^2 );
|
||
|
f_TE101 = c0/(2*pi) * k(1,0,1);
|
||
|
f_TE102 = c0/(2*pi) * k(1,0,2);
|
||
|
f_TE103 = c0/(2*pi) * k(1,0,3);
|
||
|
f_TE201 = c0/(2*pi) * k(2,0,1);
|
||
|
f_TE202 = c0/(2*pi) * k(2,0,2);
|
||
|
f_TM110 = c0/(2*pi) * k(1,1,0);
|
||
|
f_TM210 = c0/(2*pi) * k(2,1,0);
|
||
|
|
||
|
f_TE = [f_TE101 f_TE102 f_TE103 f_TE201 f_TE202];
|
||
|
f_TM = [f_TM110 f_TM210];
|
||
|
|
||
|
if ENABLE_PLOTS
|
||
|
figure
|
||
|
plot(f/1e9,abs(uy))
|
||
|
max1 = max(abs(uy));
|
||
|
hold on
|
||
|
plot( repmat(f_TE,2,1)/1e9, repmat([0; max1],1,numel(f_TE)), 'm-.', 'LineWidth', 2 )
|
||
|
xlabel('Frequency (GHz)')
|
||
|
legend( {'u_y','theoretical'} );
|
||
|
|
||
|
figure
|
||
|
plot(f/1e9,abs(uz))
|
||
|
max1 = max(abs(uz));
|
||
|
hold on
|
||
|
plot( repmat(f_TM,2,1)/1e9, repmat([0; max1],1,numel(f_TM)), 'm-.', 'LineWidth', 2 )
|
||
|
xlabel('Frequency (GHz)')
|
||
|
legend( {'u_z','theoretical'} );
|
||
|
end
|
||
|
|
||
|
pass = 1;
|
||
|
% pass = check_limits( Z, upper_limit, lower_limit );
|
||
|
% if pass
|
||
|
% disp( 'combinedtests/Coax.m (characteristic impedance): pass' );
|
||
|
% else
|
||
|
% disp( 'combinedtests/Coax.m (characteristic impedance): * FAILED *' );
|
||
|
% end
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
if pass && CLEANUP
|
||
|
rmdir( [Sim_Path '/' Sim_CSX], 's' );
|
||
|
end
|
||
|
if ~pass && STOP_IF_FAILED
|
||
|
error 'test failed';
|
||
|
end
|