openEMS/tools/sar_calculation.cpp

655 lines
17 KiB
C++
Raw Normal View History

/*
* Copyright (C) 2012 Thorsten Liebig (Thorsten.Liebig@gmx.de)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "sar_calculation.h"
#include "cfloat"
#include "array_ops.h"
#include "global.h"
SAR_Calculation::SAR_Calculation()
{
m_Vx_Used = NULL;
m_Vx_Valid = NULL;
m_DebugLevel = 0;
SetAveragingMethod(SIMPLE, true);
Reset();
}
void SAR_Calculation::Reset()
{
Delete3DArray(m_Vx_Used,m_numLines);
m_Vx_Used = NULL;
Delete3DArray(m_Vx_Valid,m_numLines);
m_Vx_Valid = NULL;
m_avg_mass = 0;
m_numLines[0]=m_numLines[1]=m_numLines[2]=0;
m_cellWidth[0]=m_cellWidth[1]=m_cellWidth[2]=NULL;
m_cell_volume = NULL;
m_cell_density = NULL;
m_cell_conductivity = NULL;
m_E_field = NULL;
m_J_field = NULL;
Delete3DArray(m_Vx_Used,m_numLines);
m_Vx_Used = NULL;
Delete3DArray(m_Vx_Valid,m_numLines);
m_Vx_Valid = NULL;
}
void SAR_Calculation::SetAveragingMethod(string method, bool silent)
{
if (method.compare("IEEE_C95_3")==0)
return SetAveragingMethod(IEEE_C95_3, silent);
if (method.compare("IEEE_62704")==0)
return SetAveragingMethod(IEEE_62704, silent);
if (method.compare("SIMPLE")==0)
return SetAveragingMethod(SIMPLE, silent);
cerr << __func__ << ": Error, """ << method << """ is an unknown averaging method..." << endl;
// unknown method, fallback to simple
SetAveragingMethod(SIMPLE, false);
}
void SAR_Calculation::SetAveragingMethod(SARAveragingMethod method, bool silent)
{
if (method==IEEE_62704)
{
m_massTolerance = 0.0001;
m_maxMassIterations = 100;
m_maxBGRatio = 0.1;
m_markPartialAsUsed = false;
m_UnusedRelativeVolLimit = 1.05;
m_IgnoreFaceValid = false;
if (!silent)
cerr << __func__ << ": Setting averaging method to IEEE_62704" << endl;
return;
}
else if (method==IEEE_C95_3)
{
m_massTolerance = 0.05;
m_maxMassIterations = 100;
m_maxBGRatio = 1;
m_markPartialAsUsed = true;
m_UnusedRelativeVolLimit = 1;
m_IgnoreFaceValid = false;
if (!silent)
cerr << __func__ << ": Setting averaging method to IEEE_C95_3" << endl;
return;
}
else if (method==SIMPLE)
{
m_massTolerance = 0.05;
m_maxMassIterations = 100;
m_maxBGRatio = 1;
m_markPartialAsUsed = true;
m_UnusedRelativeVolLimit = 1;
m_IgnoreFaceValid = true;
if (!silent)
cerr << __func__ << ": Setting averaging method to SIMPLE" << endl;
return;
}
cerr << __func__ << ": Error, unknown averaging method..." << endl;
// unknown method, fallback to simple
SetAveragingMethod(SIMPLE, false);
}
void SAR_Calculation::SetNumLines(unsigned int numLines[3])
{
Delete3DArray(m_Vx_Used,m_numLines);
m_Vx_Used = NULL;
Delete3DArray(m_Vx_Valid,m_numLines);
m_Vx_Valid = NULL;
for (int n=0;n<3;++n)
m_numLines[n]=numLines[n];
}
void SAR_Calculation::SetCellWidth(float* cellWidth[3])
{
for (int n=0;n<3;++n)
m_cellWidth[n]=cellWidth[n];
}
float*** SAR_Calculation::CalcSAR(float*** SAR)
{
if (CheckValid()==false)
{
cerr << "SAR_Calculation::CalcSAR: SAR calculation is invalid due to missing values... Abort..." << endl;
return NULL;
}
if (m_avg_mass<=0)
return CalcLocalSAR(SAR);
return CalcAveragedSAR(SAR);
}
bool SAR_Calculation::CheckValid()
{
for (int n=0;n<3;++n)
if (m_cellWidth[n]==NULL)
return false;
if (m_E_field==NULL)
return false;
if ((m_J_field==NULL) && (m_cell_conductivity==NULL))
return false;
if (m_cell_density==NULL)
return false;
if (m_avg_mass<0)
return false;
return true;
}
double SAR_Calculation::CalcSARPower()
{
if (CheckValid()==false)
{
cerr << "SAR_Calculation::CalcSARPower: SAR calculation is invalid due to missing values... Abort..." << endl;
return 0;
}
double power=0;
unsigned int pos[3];
for (pos[0]=0; pos[0]<m_numLines[0]; ++pos[0])
{
for (pos[1]=0; pos[1]<m_numLines[1]; ++pos[1])
{
for (pos[2]=0; pos[2]<m_numLines[2]; ++pos[2])
{
power += CalcLocalPowerDensity(pos)*CellVolume(pos);
}
}
}
return power;
}
double SAR_Calculation::CalcLocalPowerDensity(unsigned int pos[3])
{
double l_pow=0;
if (m_cell_conductivity==NULL)
{
l_pow = abs(m_E_field[0][pos[0]][pos[1]][pos[2]]) * abs(m_J_field[0][pos[0]][pos[1]][pos[2]]);
l_pow += abs(m_E_field[1][pos[0]][pos[1]][pos[2]]) * abs(m_J_field[1][pos[0]][pos[1]][pos[2]]);
l_pow += abs(m_E_field[2][pos[0]][pos[1]][pos[2]]) * abs(m_J_field[2][pos[0]][pos[1]][pos[2]]);
}
else
{
l_pow = m_cell_conductivity[pos[0]][pos[1]][pos[2]]*abs(m_E_field[0][pos[0]][pos[1]][pos[2]]) * abs(m_E_field[0][pos[0]][pos[1]][pos[2]]);
l_pow += m_cell_conductivity[pos[0]][pos[1]][pos[2]]*abs(m_E_field[1][pos[0]][pos[1]][pos[2]]) * abs(m_E_field[1][pos[0]][pos[1]][pos[2]]);
l_pow += m_cell_conductivity[pos[0]][pos[1]][pos[2]]*abs(m_E_field[2][pos[0]][pos[1]][pos[2]]) * abs(m_E_field[2][pos[0]][pos[1]][pos[2]]);
}
l_pow*=0.5;
return l_pow;
}
float*** SAR_Calculation::CalcLocalSAR(float*** SAR)
{
unsigned int pos[3];
m_Valid=0;
m_Used=0;
m_Unused=0;
m_AirVoxel=0;
for (pos[0]=0; pos[0]<m_numLines[0]; ++pos[0])
{
for (pos[1]=0; pos[1]<m_numLines[1]; ++pos[1])
{
for (pos[2]=0; pos[2]<m_numLines[2]; ++pos[2])
{
if (m_cell_density[pos[0]][pos[1]][pos[2]]>0)
{
++m_Valid;
SAR[pos[0]][pos[1]][pos[2]] = CalcLocalPowerDensity(pos)/m_cell_density[pos[0]][pos[1]][pos[2]];
}
else
{
++m_AirVoxel;
SAR[pos[0]][pos[1]][pos[2]] = 0;
}
}
}
}
return SAR;
}
int SAR_Calculation::FindFittingCubicalMass(unsigned int pos[3], float box_size, unsigned int start[3], unsigned int stop[3],
float partial_start[3], float partial_stop[3], double &mass, double &volume, double &bg_ratio, int disabledFace, bool ignoreFaceValid)
{
unsigned int mass_iterations = 0;
double old_mass=0;
double old_box_size=0;
bool face_valid;
bool mass_valid;
bool voxel_valid;
//iterate over cubical sizes to find fitting volume to mass
while (mass_iterations<m_maxMassIterations)
{
// calculate cubical mass
face_valid = GetCubicalMass(pos, box_size/2, start, stop, partial_start, partial_stop, mass, volume, bg_ratio, disabledFace);
// check if found mass is valid
mass_valid = abs(mass-m_avg_mass)<=m_massTolerance*m_avg_mass;
voxel_valid = mass_valid && (face_valid==true) && (bg_ratio<m_maxBGRatio);
if ((face_valid==false) && (mass<m_avg_mass*(1.0-m_massTolerance)) && (ignoreFaceValid==false))
{
// this is an invalid cube with a too small total mass --> increasing the box will not yield a valid cube
return 1;
}
else if ((face_valid==false || bg_ratio>=m_maxBGRatio) && (mass_valid))
{
// this is an invalid cube with a valid total mass
if (ignoreFaceValid)
return 0;
return 2;
}
if (voxel_valid)
{
// valid cube found
return 0;
}
// if no valid or finally invalid cube is found, calculate an alternaive cube size
if (mass_iterations==0)
{
// on first interation, try a relative resize
old_box_size=box_size;
box_size*=pow(m_avg_mass/mass,1.0/3.0);
}
else
{
// on later interations, try a newton approach
float new_box_size = box_size - (mass-m_avg_mass)/(mass-old_mass)*(box_size-old_box_size);
old_box_size = box_size;
box_size = new_box_size;
}
old_mass=mass;
++mass_iterations;
}
// m_maxMassIterations iterations are exhausted...
return -1;
}
bool SAR_Calculation::GetCubicalMass(unsigned int pos[3], double box_size, unsigned int start[3], unsigned int stop[3],
float partial_start[3], float partial_stop[3], double &mass, double &volume, double &bg_ratio, int disabledFace)
{
if ((box_size<=0) || isnan(box_size) || isinf(box_size))
{
cerr << "SAR_Calculation::GetCubicalMass: critical error: invalid averaging box size!! EXIT" << endl;
exit(-1);
}
bool face_valid=true;
for (int n=0;n<3;++n)
{
// check start position
start[n]=pos[n];
partial_start[n]=1;
float dist=m_cellWidth[n][pos[n]]/2;
if (disabledFace==2*n)
dist=box_size;
else
{
while (dist<box_size)
{
// box is outside of domain
if (start[n]==0)
{
partial_start[n]=-1;
break;
}
--start[n];
dist+=m_cellWidth[n][start[n]];
}
if (partial_start[n]!=-1)
{ // box ends inside stop[n] voxel
partial_start[n]=1-(dist-box_size)/m_cellWidth[n][start[n]];
}
if ((partial_start[n]!=-1) && (pos[n]==start[n]))
partial_start[n]=2*box_size/m_cellWidth[n][start[n]];
}
// check stop position
stop[n]=pos[n];
partial_stop[n]=1;
dist=m_cellWidth[n][pos[n]]/2;
if (disabledFace==2*n+1)
dist=box_size;
else
{
while (dist<box_size)
{
// box is outside of domain
if (stop[n]==m_numLines[n]-1)
{
partial_stop[n]=-1;
break;
}
++stop[n];
dist+=m_cellWidth[n][stop[n]];
}
if (partial_stop[n]!=-1)
{ // box ends inside stop[n] voxel
partial_stop[n]=1-(dist-box_size)/m_cellWidth[n][stop[n]];
}
if ((partial_stop[n]!=-1) && (pos[n]==stop[n]))
partial_stop[n]=2*box_size/m_cellWidth[n][stop[n]];
}
}
for (int n=0;n<3;++n)
{
if (partial_start[n]==-1)
face_valid=false;
if (partial_stop[n]==-1)
face_valid=false;
}
mass = 0;
volume = 0;
double bg_volume=0;
double weight[3];
unsigned int f_pos[3];
bool face_intersect[6] = {false,false,false,false,false,false};
for (f_pos[0]=start[0];f_pos[0]<=stop[0];++f_pos[0])
{
weight[0]=1;
if (f_pos[0]==start[0])
weight[0]*=abs(partial_start[0]);
if (f_pos[0]==stop[0])
weight[0]*=abs(partial_stop[0]);
for (f_pos[1]=start[1];f_pos[1]<=stop[1];++f_pos[1])
{
weight[1]=1;
if (f_pos[1]==start[1])
weight[1]*=abs(partial_start[1]);
if (f_pos[1]==stop[1])
weight[1]*=abs(partial_stop[1]);
for (f_pos[2]=start[2];f_pos[2]<=stop[2];++f_pos[2])
{
weight[2]=1;
if (f_pos[2]==start[2])
weight[2]*=abs(partial_start[2]);
if (f_pos[2]==stop[2])
weight[2]*=abs(partial_stop[2]);
mass += CellMass(f_pos)*weight[0]*weight[1]*weight[2];
volume += CellVolume(f_pos)*weight[0]*weight[1]*weight[2];
if (m_cell_density[f_pos[0]][f_pos[1]][f_pos[2]]==0)
bg_volume += CellVolume(f_pos)*weight[0]*weight[1]*weight[2];
else
{
for (int n=0;n<3;++n)
{
if (start[n]==f_pos[n])
face_intersect[2*n]=true;
if (stop[n]==f_pos[n])
face_intersect[2*n+1]=true;
}
}
}
}
}
//check if all bounds have intersected a material boundary
for (int n=0;n<6;++n)
face_valid *= face_intersect[n];
bg_ratio = bg_volume/volume;
return face_valid;
}
float SAR_Calculation::CalcCubicalSAR(float*** SAR, unsigned int pos[3], unsigned int start[3], unsigned int stop[3], float partial_start[3], float partial_stop[3], bool assignUsed)
{
double power_mass=0;
double mass=0;
double weight[3];
unsigned int f_pos[3];
for (f_pos[0]=start[0];f_pos[0]<=stop[0];++f_pos[0])
{
weight[0]=1;
if (f_pos[0]==start[0])
weight[0]*=abs(partial_start[0]);
if (f_pos[0]==stop[0])
weight[0]*=abs(partial_stop[0]);
for (f_pos[1]=start[1];f_pos[1]<=stop[1];++f_pos[1])
{
weight[1]=1;
if (f_pos[1]==start[1])
weight[1]*=abs(partial_start[1]);
if (f_pos[1]==stop[1])
weight[1]*=abs(partial_stop[1]);
for (f_pos[2]=start[2];f_pos[2]<=stop[2];++f_pos[2])
{
weight[2]=1;
if (f_pos[2]==start[2])
weight[2]*=abs(partial_start[2]);
if (f_pos[2]==stop[2])
weight[2]*=abs(partial_stop[2]);
if (m_cell_density[f_pos[0]][f_pos[1]][f_pos[2]]>=0)
{
mass += CellMass(f_pos)*weight[0]*weight[1]*weight[2];
power_mass += CalcLocalPowerDensity(f_pos) * CellVolume(f_pos)*weight[0]*weight[1]*weight[2];
}
}
}
}
float vx_SAR = power_mass/mass;
if (SAR==NULL)
return vx_SAR;
SAR[pos[0]][pos[1]][pos[2]]=vx_SAR;
if (assignUsed==false)
return vx_SAR;
// assign SAR to all used voxel
bool is_partial[3];
for (f_pos[0]=start[0];f_pos[0]<=stop[0];++f_pos[0])
{
if ( ((f_pos[0]==start[0]) && (partial_start[0]!=1)) || ((f_pos[0]==stop[0]) && (partial_stop[0]!=1)) )
is_partial[0]=true;
else
is_partial[0]=false;
for (f_pos[1]=start[1];f_pos[1]<=stop[1];++f_pos[1])
{
if ( ((f_pos[1]==start[1]) && (partial_start[1]!=1)) || ((f_pos[1]==stop[1]) && (partial_stop[1]!=1)) )
is_partial[1]=true;
else
is_partial[1]=false;
for (f_pos[2]=start[2];f_pos[2]<=stop[2];++f_pos[2])
{
if ( ((f_pos[2]==start[2]) && (partial_start[2]!=1)) || ((f_pos[2]==stop[2]) && (partial_stop[2]!=1)) )
is_partial[2]=true;
else
is_partial[2]=false;
if ( (!is_partial[0] && !is_partial[1] && !is_partial[2]) || m_markPartialAsUsed)
{
if (!m_Vx_Valid[f_pos[0]][f_pos[1]][f_pos[2]] && (m_cell_density[f_pos[0]][f_pos[1]][f_pos[2]]>0))
{
m_Vx_Used[f_pos[0]][f_pos[1]][f_pos[2]]=true;
SAR[f_pos[0]][f_pos[1]][f_pos[2]]=max(SAR[f_pos[0]][f_pos[1]][f_pos[2]], vx_SAR);
}
}
}
}
}
return vx_SAR;
}
float*** SAR_Calculation::CalcAveragedSAR(float*** SAR)
{
unsigned int pos[3];
m_Vx_Used = Create3DArray<bool>(m_numLines);
m_Vx_Valid = Create3DArray<bool>(m_numLines);
double voxel_volume;
double total_mass;
unsigned int start[3];
unsigned int stop[3];
float partial_start[3];
float partial_stop[3];
double bg_ratio;
int EC=0;
// debug counter
unsigned int cnt_case1=0;
unsigned int cnt_case2=0;
unsigned int cnt_NoConvergence=0;
m_Valid=0;
m_Used=0;
m_Unused=0;
m_AirVoxel=0;
for (pos[0]=0; pos[0]<m_numLines[0]; ++pos[0])
{
for (pos[1]=0; pos[1]<m_numLines[1]; ++pos[1])
{
for (pos[2]=0; pos[2]<m_numLines[2]; ++pos[2])
{
if (m_cell_density[pos[0]][pos[1]][pos[2]]==0)
{
SAR[pos[0]][pos[1]][pos[2]] = 0;
++m_AirVoxel;
continue;
}
// guess an initial box size and find a fitting cube
EC = FindFittingCubicalMass(pos, pow(m_avg_mass/m_cell_density[pos[0]][pos[1]][pos[2]],1.0/3.0)/2, start, stop,
partial_start, partial_stop, total_mass, voxel_volume, bg_ratio, -1, m_IgnoreFaceValid);
if (EC==0)
{
m_Vx_Valid[pos[0]][pos[1]][pos[2]] = true;
m_Vx_Used[pos[0]][pos[1]][pos[2]] = true;
++m_Valid;
CalcCubicalSAR(SAR, pos, start, stop, partial_start, partial_stop, true);
}
else if (EC==1)
++cnt_case1;
else if (EC==2)
++cnt_case2;
else if (EC==-1)
++cnt_NoConvergence;
else
cerr << "other EC" << EC << endl;
}
}
}
if (cnt_NoConvergence>0)
{
cerr << "SAR_Calculation::CalcAveragedSAR: Warning, for some voxel a valid averaging cube could not be found (no convergence)... " << endl;
}
if (m_DebugLevel>0)
{
cerr << "Number of invalid cubes (case 1): " << cnt_case1 << endl;
cerr << "Number of invalid cubes (case 2): " << cnt_case2 << endl;
cerr << "Number of invalid cubes (failed to converge): " << cnt_NoConvergence << endl;
}
// count all used and unused etc. + special handling of unused voxels!!
m_Used=0;
m_Unused=0;
for (pos[0]=0;pos[0]<m_numLines[0];++pos[0])
{
for (pos[1]=0;pos[1]<m_numLines[1];++pos[1])
{
for (pos[2]=0;pos[2]<m_numLines[2];++pos[2])
{
if (!m_Vx_Valid[pos[0]][pos[1]][pos[2]] && m_Vx_Used[pos[0]][pos[1]][pos[2]])
++m_Used;
if ((m_cell_density[pos[0]][pos[1]][pos[2]]>0) && !m_Vx_Valid[pos[0]][pos[1]][pos[2]] && !m_Vx_Used[pos[0]][pos[1]][pos[2]])
{
++m_Unused;
SAR[pos[0]][pos[1]][pos[2]] = 0;
double unused_volumes[6];
float unused_SAR[6];
double min_Vol=FLT_MAX;
// special handling of unused voxels:
for (int n=0;n<6;++n)
{
EC = FindFittingCubicalMass(pos, pow(m_avg_mass/m_cell_density[pos[0]][pos[1]][pos[2]],1.0/3.0)/2, start, stop,
partial_start, partial_stop, total_mass, unused_volumes[n], bg_ratio, n, true);
if ((EC!=0) && (EC!=2))
{
// this should not happen
cerr << "SAR_Calculation::CalcAveragedSAR: Error handling unused voxels, can't find fitting cubical averaging volume' " << endl;
unused_SAR[n]=0;
}
else
{
unused_SAR[n]=CalcCubicalSAR(NULL, pos, start, stop, partial_start, partial_stop, false);
min_Vol = min(min_Vol,unused_volumes[n]);
}
}
for (int n=0;n<6;++n)
{
if (unused_volumes[n]<=m_UnusedRelativeVolLimit*min_Vol)
SAR[pos[0]][pos[1]][pos[2]] = max(SAR[pos[0]][pos[1]][pos[2]],unused_SAR[n]);
}
}
}
}
}
if (m_Valid+m_Used+m_Unused+m_AirVoxel!=m_numLines[0]*m_numLines[1]*m_numLines[2])
{
cerr << "SAR_Calculation::CalcAveragedSAR: critical error, mismatch in voxel status count... EXIT" << endl;
exit(1);
}
if (m_DebugLevel>0)
cerr << "SAR_Calculation::CalcAveragedSAR: Stats: Valid=" << m_Valid << " Used=" << m_Used << " Unused=" << m_Unused << " Air-Voxel=" << m_AirVoxel << endl;
return SAR;
}
double SAR_Calculation::CellVolume(unsigned int pos[3])
{
if (m_cell_volume)
return m_cell_volume[pos[0]][pos[1]][pos[2]];
double volume=1;
for (int n=0;n<3;++n)
volume*=m_cellWidth[n][pos[n]];
return volume;
}
double SAR_Calculation::CellMass(unsigned int pos[3])
{
return m_cell_density[pos[0]][pos[1]][pos[2]]*CellVolume(pos);
}