2010-04-09 13:51:37 +00:00
/*
* Copyright ( C ) 2010 Thorsten Liebig ( Thorsten . Liebig @ gmx . de )
*
* This program is free software : you can redistribute it and / or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation , either version 3 of the License , or
* ( at your option ) any later version .
*
* This program is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
* GNU General Public License for more details .
*
* You should have received a copy of the GNU General Public License
* along with this program . If not , see < http : //www.gnu.org/licenses/>.
*/
# include "operator_cylinder.h"
Operator_Cylinder * Operator_Cylinder : : New ( )
{
Operator_Cylinder * op = new Operator_Cylinder ( ) ;
op - > Init ( ) ;
return op ;
}
Operator_Cylinder : : Operator_Cylinder ( )
{
}
Operator_Cylinder : : ~ Operator_Cylinder ( )
{
Operator : : Reset ( ) ;
}
void Operator_Cylinder : : Init ( )
{
CC_closedAlpha = false ;
CC_R0_included = false ;
Operator : : Init ( ) ;
}
void Operator_Cylinder : : Reset ( )
{
Operator : : Reset ( ) ;
}
2010-04-11 21:52:38 +00:00
inline unsigned int Operator_Cylinder : : GetNumberOfLines ( int ny ) const
{
//this is necessary for a correct field processing... cylindrical engine has to reset this by adding +1
if ( CC_closedAlpha & & ny = = 1 )
return numLines [ 1 ] - 1 ;
return numLines [ ny ] ;
}
2010-04-09 13:51:37 +00:00
bool Operator_Cylinder : : SetGeometryCSX ( ContinuousStructure * geo )
{
if ( Operator : : SetGeometryCSX ( geo ) = = false ) return false ;
double minmaxA = fabs ( discLines [ 1 ] [ numLines [ 1 ] - 1 ] - discLines [ 1 ] [ 0 ] ) ;
// cerr << minmaxA -2*PI << " < " << (2*PI)/10/numLines[1] << endl;
if ( fabs ( minmaxA - 2 * PI ) < ( 2 * PI ) / 10 / numLines [ 1 ] ) //check minmaxA smaller then a tenth of average alpha-width
{
cout < < " Operator_Cylinder::SetGeometryCSX: Alpha is a full 2*PI => closed Cylinder... " < < endl ;
2010-04-11 21:52:38 +00:00
CC_closedAlpha = true ;
discLines [ 1 ] [ numLines [ 1 ] - 1 ] = discLines [ 1 ] [ 0 ] + 2 * PI ;
cerr < < " Operator_Cylinder::SetGeometryCSX: Warning, not handling the disc-line width and material averaging correctly yet for a closed cylinder... " < < endl ;
if ( MainOp - > GetIndexDelta ( 1 , 0 ) - MainOp - > GetIndexDelta ( 1 , numLines [ 1 ] - 2 ) > ( 2 * PI ) / 10 / numLines [ 1 ] )
{
cerr < < " Operator_Cylinder::SetGeometryCSX: first and last angle delta must be the same... deviation to large... " < < MainOp - > GetIndexDelta ( 1 , 0 ) - MainOp - > GetIndexDelta ( 1 , numLines [ 1 ] - 2 ) < < endl ;
exit ( 1 ) ;
}
if ( MainOp - > GetIndexDelta ( 1 , 0 ) - MainOp - > GetIndexDelta ( 1 , numLines [ 1 ] - 2 ) > 0 )
{
cerr < < " Operator_Cylinder::SetGeometryCSX: first and last angle delta must be the same... auto correction of deviation: " < < MainOp - > GetIndexDelta ( 1 , 0 ) - MainOp - > GetIndexDelta ( 1 , numLines [ 1 ] - 2 ) < < endl ;
discLines [ 1 ] [ numLines [ 1 ] - 2 ] = discLines [ 1 ] [ numLines [ 1 ] - 1 ] - MainOp - > GetIndexDelta ( 1 , 0 ) ;
}
2010-04-09 13:51:37 +00:00
}
else if ( minmaxA > 2 * PI )
{ cerr < < " Operator_Cylinder::SetGeometryCSX: Alpha Max-Min must not be larger than 2*PI!!! " < < endl ; Reset ( ) ; return false ; }
else CC_closedAlpha = false ;
if ( discLines [ 0 ] [ 0 ] < 0 )
{ cerr < < " Operator_Cylinder::SetGeometryCSX: r<0 not allowed in Cylinder Coordinates!!! " < < endl ; Reset ( ) ; return false ; }
else if ( discLines [ 0 ] [ 0 ] = = 0.0 )
{
cout < < " Operator_Cylinder::SetGeometryCSX: r=0 included... " < < endl ;
cerr < < " Operator_Cylinder::SetGeometryCSX: r=0 included not yet implemented... exit... " < < endl ; exit ( 1 ) ;
CC_R0_included = true ;
}
return true ;
}
inline void Operator_Cylinder : : Calc_ECOperatorPos ( int n , unsigned int * pos )
{
unsigned int i = MainOp - > SetPos ( pos [ 0 ] , pos [ 1 ] , pos [ 2 ] ) ;
if ( EC_C [ n ] [ i ] > 0 )
{
vv [ n ] [ pos [ 0 ] ] [ pos [ 1 ] ] [ pos [ 2 ] ] = ( 1 - dT * EC_G [ n ] [ i ] / 2 / EC_C [ n ] [ i ] ) / ( 1 + dT * EC_G [ n ] [ i ] / 2 / EC_C [ n ] [ i ] ) ;
vi [ n ] [ pos [ 0 ] ] [ pos [ 1 ] ] [ pos [ 2 ] ] = ( dT / EC_C [ n ] [ i ] ) / ( 1 + dT * EC_G [ n ] [ i ] / 2 / EC_C [ n ] [ i ] ) ;
}
else
{
vv [ n ] [ pos [ 0 ] ] [ pos [ 1 ] ] [ pos [ 2 ] ] = 0 ;
vi [ n ] [ pos [ 0 ] ] [ pos [ 1 ] ] [ pos [ 2 ] ] = 0 ;
}
if ( EC_L [ n ] [ i ] > 0 )
{
ii [ n ] [ pos [ 0 ] ] [ pos [ 1 ] ] [ pos [ 2 ] ] = ( 1 - dT * EC_R [ n ] [ i ] / 2 / EC_L [ n ] [ i ] ) / ( 1 + dT * EC_R [ n ] [ i ] / 2 / EC_L [ n ] [ i ] ) ;
iv [ n ] [ pos [ 0 ] ] [ pos [ 1 ] ] [ pos [ 2 ] ] = ( dT / EC_L [ n ] [ i ] ) / ( 1 + dT * EC_R [ n ] [ i ] / 2 / EC_L [ n ] [ i ] ) ;
}
else
{
ii [ n ] [ pos [ 0 ] ] [ pos [ 1 ] ] [ pos [ 2 ] ] = 0 ;
iv [ n ] [ pos [ 0 ] ] [ pos [ 1 ] ] [ pos [ 2 ] ] = 0 ;
}
}
void Operator_Cylinder : : ApplyElectricBC ( bool * dirs )
{
if ( dirs = = NULL ) return ;
if ( CC_closedAlpha )
{
dirs [ 2 ] = 0 ; dirs [ 3 ] = 0 ; //no PEC in alpha directions...
}
if ( CC_R0_included )
{
dirs [ 2 ] = 0 ; //no PEC in r_min directions...
}
Operator : : ApplyElectricBC ( dirs ) ;
}
void Operator_Cylinder : : ApplyMagneticBC ( bool * dirs )
{
if ( dirs = = NULL ) return ;
if ( CC_closedAlpha )
{
dirs [ 2 ] = 0 ; dirs [ 3 ] = 0 ; //no PMC in alpha directions...
}
if ( CC_R0_included )
{
dirs [ 2 ] = 0 ; //no PMC in r_min directions...
}
Operator : : ApplyMagneticBC ( dirs ) ;
}
bool Operator_Cylinder : : Calc_ECPos ( int n , unsigned int * pos , double * inEC )
{
double coord [ 3 ] ;
double shiftCoord [ 3 ] ;
int nP = ( n + 1 ) % 3 ;
int nPP = ( n + 2 ) % 3 ;
coord [ 0 ] = discLines [ 0 ] [ pos [ 0 ] ] ;
coord [ 1 ] = discLines [ 1 ] [ pos [ 1 ] ] ;
coord [ 2 ] = discLines [ 2 ] [ pos [ 2 ] ] ;
unsigned int ipos = MainOp - > SetPos ( pos [ 0 ] , pos [ 1 ] , pos [ 2 ] ) ;
double delta = MainOp - > GetIndexDelta ( n , pos [ n ] ) ;
double deltaP = MainOp - > GetIndexDelta ( nP , pos [ nP ] ) ;
double deltaPP = MainOp - > GetIndexDelta ( nPP , pos [ nPP ] ) ;
double delta_M = MainOp - > GetIndexDelta ( n , pos [ n ] - 1 ) ;
double deltaP_M = MainOp - > GetIndexDelta ( nP , pos [ nP ] - 1 ) ;
double deltaPP_M = MainOp - > GetIndexDelta ( nPP , pos [ nPP ] - 1 ) ;
double geom_factor , A_n ;
//******************************* epsilon,kappa averaging *****************************//
//shift up-right
shiftCoord [ n ] = coord [ n ] + delta * 0.5 ;
shiftCoord [ nP ] = coord [ nP ] + deltaP * 0.25 ;
shiftCoord [ nPP ] = coord [ nPP ] + deltaPP * 0.25 ;
CSProperties * prop = CSX - > GetPropertyByCoordPriority ( shiftCoord , CSProperties : : MATERIAL ) ;
switch ( n )
{
case 0 :
geom_factor = fabs ( deltaPP * deltaP / delta ) * ( coord [ 0 ] + fabs ( delta ) / 2 ) * 0.25 ;
break ;
case 1 :
geom_factor = fabs ( deltaP * deltaPP / ( delta * coord [ 0 ] ) ) * 0.25 ;
break ;
case 2 :
geom_factor = fabs ( deltaPP / delta ) * ( pow ( coord [ 0 ] + fabs ( deltaP ) / 2.0 , 2.0 ) - pow ( coord [ 0 ] , 2.0 ) ) * 0.25 ;
break ;
}
geom_factor * = gridDelta ;
if ( prop )
{
CSPropMaterial * mat = prop - > ToMaterial ( ) ;
inEC [ 0 ] = mat - > GetEpsilonWeighted ( n , shiftCoord ) * geom_factor * __EPS0__ ;
inEC [ 1 ] = mat - > GetKappaWeighted ( n , shiftCoord ) * geom_factor ;
}
else
{
inEC [ 0 ] = 1 * geom_factor * __EPS0__ ;
inEC [ 1 ] = 0 ;
}
//shift up-left
shiftCoord [ n ] = coord [ n ] + delta * 0.5 ;
shiftCoord [ nP ] = coord [ nP ] - deltaP_M * 0.25 ;
shiftCoord [ nPP ] = coord [ nPP ] + deltaPP * 0.25 ;
prop = CSX - > GetPropertyByCoordPriority ( shiftCoord , CSProperties : : MATERIAL ) ;
switch ( n )
{
case 0 :
geom_factor = fabs ( deltaPP * deltaP_M / delta ) * ( coord [ 0 ] + fabs ( delta ) / 2 ) * 0.25 ;
break ;
case 1 :
geom_factor = fabs ( deltaP_M * deltaPP / ( delta * coord [ 0 ] ) ) * 0.25 ;
break ;
case 2 :
geom_factor = fabs ( deltaPP / delta ) * ( pow ( coord [ 0 ] , 2.0 ) - pow ( coord [ 0 ] - fabs ( deltaP_M ) / 2.0 , 2.0 ) ) * 0.25 ;
break ;
}
geom_factor * = gridDelta ;
if ( prop )
{
CSPropMaterial * mat = prop - > ToMaterial ( ) ;
inEC [ 0 ] + = mat - > GetEpsilonWeighted ( n , shiftCoord ) * geom_factor * __EPS0__ ;
inEC [ 1 ] + = mat - > GetKappaWeighted ( n , shiftCoord ) * geom_factor ;
}
else
{
inEC [ 0 ] + = 1 * geom_factor * __EPS0__ ;
inEC [ 1 ] + = 0 ;
}
//shift down-right
shiftCoord [ n ] = coord [ n ] + delta * 0.5 ;
shiftCoord [ nP ] = coord [ nP ] + deltaP * 0.25 ;
shiftCoord [ nPP ] = coord [ nPP ] - deltaPP_M * 0.25 ;
prop = CSX - > GetPropertyByCoordPriority ( shiftCoord , CSProperties : : MATERIAL ) ;
switch ( n )
{
case 0 :
geom_factor = fabs ( deltaPP_M * deltaP / delta ) * ( coord [ 0 ] + fabs ( delta ) / 2 ) * 0.25 ;
break ;
case 1 :
geom_factor = fabs ( deltaP * deltaPP_M / ( delta * coord [ 0 ] ) ) * 0.25 ;
break ;
case 2 :
geom_factor = fabs ( deltaPP_M / delta ) * ( pow ( coord [ 0 ] + fabs ( deltaP ) / 2.0 , 2.0 ) - pow ( coord [ 0 ] , 2.0 ) ) * 0.25 ;
break ;
}
geom_factor * = gridDelta ;
if ( prop )
{
CSPropMaterial * mat = prop - > ToMaterial ( ) ;
inEC [ 0 ] + = mat - > GetEpsilonWeighted ( n , shiftCoord ) * geom_factor * __EPS0__ ;
inEC [ 1 ] + = mat - > GetKappaWeighted ( n , shiftCoord ) * geom_factor ;
}
else
{
inEC [ 0 ] + = 1 * geom_factor * __EPS0__ ;
inEC [ 1 ] + = 0 ;
}
//shift down-left
shiftCoord [ n ] = coord [ n ] + delta * 0.5 ;
shiftCoord [ nP ] = coord [ nP ] - deltaP_M * 0.25 ;
shiftCoord [ nPP ] = coord [ nPP ] - deltaPP_M * 0.25 ;
prop = CSX - > GetPropertyByCoordPriority ( shiftCoord , CSProperties : : MATERIAL ) ;
switch ( n )
{
case 0 :
geom_factor = fabs ( deltaPP_M * deltaP_M / delta ) * ( coord [ 0 ] + fabs ( delta ) / 2 ) * 0.25 ;
break ;
case 1 :
geom_factor = fabs ( deltaP_M * deltaPP_M / ( delta * coord [ 0 ] ) ) * 0.25 ;
break ;
case 2 :
geom_factor = fabs ( deltaPP_M / delta ) * ( pow ( coord [ 0 ] , 2.0 ) - pow ( coord [ 0 ] - fabs ( deltaP_M ) / 2.0 , 2.0 ) ) * 0.25 ;
break ;
}
geom_factor * = gridDelta ;
if ( prop )
{
CSPropMaterial * mat = prop - > ToMaterial ( ) ;
inEC [ 0 ] + = mat - > GetEpsilonWeighted ( n , shiftCoord ) * geom_factor * __EPS0__ ;
inEC [ 1 ] + = mat - > GetKappaWeighted ( n , shiftCoord ) * geom_factor ;
}
else
{
inEC [ 0 ] + = 1 * geom_factor * __EPS0__ ;
inEC [ 1 ] + = 0 ;
}
if ( CC_R0_included & & ( n > 0 ) & & ( coord [ 0 ] = = 0 ) )
{
inEC [ 0 ] = 0 ;
inEC [ 1 ] = 0 ;
}
// if ((n==2) && (pos[1]==0) && (pos[2]==0))
// cerr << n << " -> " << pos[0] << " " << pos[1] << " " << pos[2] << " " << inEC[0] << endl;
//******************************* mu,sigma averaging *****************************//
//shift down
shiftCoord [ n ] = coord [ n ] - delta_M * 0.25 ;
shiftCoord [ nP ] = coord [ nP ] + deltaP * 0.5 ;
shiftCoord [ nPP ] = coord [ nPP ] + deltaPP * 0.5 ;
prop = CSX - > GetPropertyByCoordPriority ( shiftCoord , CSProperties : : MATERIAL ) ;
double delta_n = fabs ( delta_M ) ;
if ( n = = 1 )
{
delta_n = delta_n * ( coord [ 0 ] + 0.5 * fabs ( deltaPP ) ) ; //multiply delta-angle by radius
}
if ( prop )
{
CSPropMaterial * mat = prop - > ToMaterial ( ) ;
inEC [ 2 ] = delta_n / mat - > GetMueWeighted ( n , shiftCoord ) ;
if ( mat - > GetSigma ( n ) )
inEC [ 3 ] = delta_n / mat - > GetSigmaWeighted ( n , shiftCoord ) ;
else
inEC [ 3 ] = 0 ;
}
else
{
inEC [ 2 ] = delta_n ;
inEC [ 3 ] = 0 ;
}
//shift up
shiftCoord [ n ] = coord [ n ] + delta * 0.25 ;
shiftCoord [ nP ] = coord [ nP ] + deltaP * 0.5 ;
shiftCoord [ nPP ] = coord [ nPP ] + deltaPP * 0.5 ;
prop = CSX - > GetPropertyByCoordPriority ( shiftCoord , CSProperties : : MATERIAL ) ;
delta_n = fabs ( delta ) ;
if ( n = = 1 )
{
delta_n = delta_n * ( coord [ 0 ] + 0.5 * fabs ( deltaPP ) ) ; //multiply delta-angle by radius
}
if ( prop )
{
CSPropMaterial * mat = prop - > ToMaterial ( ) ;
inEC [ 2 ] + = mat - > GetMue ( n ) * delta_n ;
if ( mat - > GetSigmaWeighted ( n , shiftCoord ) )
inEC [ 3 ] + = delta_n / mat - > GetSigmaWeighted ( n , shiftCoord ) ;
else
inEC [ 3 ] = 0 ;
}
else
{
inEC [ 2 ] + = 1 * delta_n ;
inEC [ 3 ] = 0 ;
}
A_n = fabs ( deltaP * deltaPP ) ;
if ( n = = 0 ) //z-direction n==0 -> r; nP==1 -> alpha; nPP==2 -> z
{
A_n = A_n * coord [ 0 ] ;
}
if ( n = = 2 ) //z-direction n==2 -> z; nP==0 -> r; nPP==1 -> alpha
{
A_n = fabs ( deltaPP ) * ( pow ( coord [ 0 ] + fabs ( deltaP ) , 2.0 ) - pow ( coord [ 0 ] , 2.0 ) ) * 0.5 ;
}
inEC [ 2 ] = gridDelta * A_n * 2 * __MUE0__ / inEC [ 2 ] ;
if ( inEC [ 3 ] ) inEC [ 3 ] = gridDelta * A_n * 2 / inEC [ 3 ] ;
// if ((n==0) && (pos[1]==0) && (pos[2]==0))
// cerr << inEC[2]/(coord[0]) << endl;
// cerr << n << " -> " << pos[0] << " " << pos[1] << " " << pos[2] << " " << inEC[2] << endl;
return true ;
}
bool Operator_Cylinder : : Calc_EffMatPos ( int n , unsigned int * pos , double * inMat )
{
return false ; //fixme
// int nP = (n+1)%3;
// int nPP = (n+2)%3;
//
// unsigned int ipos = MainOp->SetPos(pos[0],pos[1],pos[2]);
// double delta=MainOp->GetIndexDelta(n,pos[n]);
// double deltaP=MainOp->GetIndexDelta(nP,pos[nP]);
// double deltaPP=MainOp->GetIndexDelta(nPP,pos[nPP]);
//
// double delta_M=MainOp->GetIndexDelta(n,pos[n]-1);
// double deltaP_M=MainOp->GetIndexDelta(nP,pos[nP]-1);
// double deltaPP_M=MainOp->GetIndexDelta(nPP,pos[nPP]-1);
//
// this->Calc_ECPos(n,pos,inMat);
//
// inMat[0] *= (delta*delta)/MainOp->GetNodeVolume(ipos)/gridDelta;
// inMat[1] *= (delta*delta)/MainOp->GetNodeVolume(ipos)/gridDelta;
//
// inMat[2] *= 0.5*(fabs(delta_M) + fabs(delta)) / fabs(deltaP*deltaPP) / gridDelta;
// inMat[3] *= 0.5*(fabs(delta_M) + fabs(delta)) / fabs(deltaP*deltaPP) / gridDelta;
//
// return true;
}