modbus_rtu_test/libmodbus/modbus-rtu.c

1306 lines
36 KiB
C

/*
* Copyright © 2001-2011 Stéphane Raimbault <stephane.raimbault@gmail.com>
*
* SPDX-License-Identifier: LGPL-2.1-or-later
*/
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <fcntl.h>
#include <string.h>
#ifndef _MSC_VER
#include <unistd.h>
#endif
#include <assert.h>
#include "modbus-private.h"
#include "modbus-rtu.h"
#include "modbus-rtu-private.h"
#if HAVE_DECL_TIOCSRS485 || HAVE_DECL_TIOCM_RTS
#include <sys/ioctl.h>
#endif
#if HAVE_DECL_TIOCSRS485
#include <linux/serial.h>
#endif
/* Table of CRC values for high-order byte */
static const uint8_t table_crc_hi[] = {
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1,
0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1,
0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40,
0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1,
0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40,
0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40,
0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1,
0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
};
/* Table of CRC values for low-order byte */
static const uint8_t table_crc_lo[] = {
0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06,
0x07, 0xC7, 0x05, 0xC5, 0xC4, 0x04, 0xCC, 0x0C, 0x0D, 0xCD,
0x0F, 0xCF, 0xCE, 0x0E, 0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09,
0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDB, 0xDA, 0x1A,
0x1E, 0xDE, 0xDF, 0x1F, 0xDD, 0x1D, 0x1C, 0xDC, 0x14, 0xD4,
0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2, 0x12, 0x13, 0xD3,
0x11, 0xD1, 0xD0, 0x10, 0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3,
0xF2, 0x32, 0x36, 0xF6, 0xF7, 0x37, 0xF5, 0x35, 0x34, 0xF4,
0x3C, 0xFC, 0xFD, 0x3D, 0xFF, 0x3F, 0x3E, 0xFE, 0xFA, 0x3A,
0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38, 0x28, 0xE8, 0xE9, 0x29,
0xEB, 0x2B, 0x2A, 0xEA, 0xEE, 0x2E, 0x2F, 0xEF, 0x2D, 0xED,
0xEC, 0x2C, 0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26,
0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0, 0xA0, 0x60,
0x61, 0xA1, 0x63, 0xA3, 0xA2, 0x62, 0x66, 0xA6, 0xA7, 0x67,
0xA5, 0x65, 0x64, 0xA4, 0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F,
0x6E, 0xAE, 0xAA, 0x6A, 0x6B, 0xAB, 0x69, 0xA9, 0xA8, 0x68,
0x78, 0xB8, 0xB9, 0x79, 0xBB, 0x7B, 0x7A, 0xBA, 0xBE, 0x7E,
0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C, 0xB4, 0x74, 0x75, 0xB5,
0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71,
0x70, 0xB0, 0x50, 0x90, 0x91, 0x51, 0x93, 0x53, 0x52, 0x92,
0x96, 0x56, 0x57, 0x97, 0x55, 0x95, 0x94, 0x54, 0x9C, 0x5C,
0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E, 0x5A, 0x9A, 0x9B, 0x5B,
0x99, 0x59, 0x58, 0x98, 0x88, 0x48, 0x49, 0x89, 0x4B, 0x8B,
0x8A, 0x4A, 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C, 0x8C,
0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42,
0x43, 0x83, 0x41, 0x81, 0x80, 0x40
};
/* Define the slave ID of the remote device to talk in master mode or set the
* internal slave ID in slave mode */
static int _modbus_set_slave(modbus_t *ctx, int slave)
{
/* Broadcast address is 0 (MODBUS_BROADCAST_ADDRESS) */
if (slave >= 0 && slave <= 247) {
ctx->slave = slave;
} else {
errno = EINVAL;
return -1;
}
return 0;
}
/* Builds a RTU request header */
static int _modbus_rtu_build_request_basis(modbus_t *ctx, int function,
int addr, int nb,
uint8_t *req)
{
assert(ctx->slave != -1);
req[0] = ctx->slave;
req[1] = function;
req[2] = addr >> 8;
req[3] = addr & 0x00ff;
req[4] = nb >> 8;
req[5] = nb & 0x00ff;
return _MODBUS_RTU_PRESET_REQ_LENGTH;
}
/* Builds a RTU response header */
static int _modbus_rtu_build_response_basis(sft_t *sft, uint8_t *rsp)
{
/* In this case, the slave is certainly valid because a check is already
* done in _modbus_rtu_listen */
rsp[0] = sft->slave;
rsp[1] = sft->function;
return _MODBUS_RTU_PRESET_RSP_LENGTH;
}
static uint16_t crc16(uint8_t *buffer, uint16_t buffer_length)
{
uint8_t crc_hi = 0xFF; /* high CRC byte initialized */
uint8_t crc_lo = 0xFF; /* low CRC byte initialized */
unsigned int i; /* will index into CRC lookup */
/* pass through message buffer */
while (buffer_length--) {
i = crc_lo ^ *buffer++; /* calculate the CRC */
crc_lo = crc_hi ^ table_crc_hi[i];
crc_hi = table_crc_lo[i];
}
return (crc_hi << 8 | crc_lo);
}
static int _modbus_rtu_prepare_response_tid(const uint8_t *req, int *req_length)
{
(*req_length) -= _MODBUS_RTU_CHECKSUM_LENGTH;
/* No TID */
return 0;
}
static int _modbus_rtu_send_msg_pre(uint8_t *req, int req_length)
{
uint16_t crc = crc16(req, req_length);
/* According to the MODBUS specs (p. 14), the low order byte of the CRC comes
* first in the RTU message */
req[req_length++] = crc & 0x00FF;
req[req_length++] = crc >> 8;
return req_length;
}
#if defined(_WIN32)
/* This simple implementation is sort of a substitute of the select() call,
* working this way: the win32_ser_select() call tries to read some data from
* the serial port, setting the timeout as the select() call would. Data read is
* stored into the receive buffer, that is then consumed by the win32_ser_read()
* call. So win32_ser_select() does both the event waiting and the reading,
* while win32_ser_read() only consumes the receive buffer.
*/
static void win32_ser_init(struct win32_ser *ws)
{
/* Clear everything */
memset(ws, 0x00, sizeof(struct win32_ser));
/* Set file handle to invalid */
ws->fd = INVALID_HANDLE_VALUE;
}
/* FIXME Try to remove length_to_read -> max_len argument, only used by win32 */
static int win32_ser_select(struct win32_ser *ws, int max_len,
const struct timeval *tv)
{
COMMTIMEOUTS comm_to;
unsigned int msec = 0;
/* Check if some data still in the buffer to be consumed */
if (ws->n_bytes > 0) {
return 1;
}
/* Setup timeouts like select() would do.
FIXME Please someone on Windows can look at this?
Does it possible to use WaitCommEvent?
When tv is NULL, MAXDWORD isn't infinite!
*/
if (tv == NULL) {
msec = MAXDWORD;
} else {
msec = tv->tv_sec * 1000 + tv->tv_usec / 1000;
if (msec < 1)
msec = 1;
}
comm_to.ReadIntervalTimeout = msec;
comm_to.ReadTotalTimeoutMultiplier = 0;
comm_to.ReadTotalTimeoutConstant = msec;
comm_to.WriteTotalTimeoutMultiplier = 0;
comm_to.WriteTotalTimeoutConstant = 1000;
SetCommTimeouts(ws->fd, &comm_to);
/* Read some bytes */
if ((max_len > PY_BUF_SIZE) || (max_len < 0)) {
max_len = PY_BUF_SIZE;
}
if (ReadFile(ws->fd, &ws->buf, max_len, &ws->n_bytes, NULL)) {
/* Check if some bytes available */
if (ws->n_bytes > 0) {
/* Some bytes read */
return 1;
} else {
/* Just timed out */
return 0;
}
} else {
/* Some kind of error */
return -1;
}
}
static int win32_ser_read(struct win32_ser *ws, uint8_t *p_msg,
unsigned int max_len)
{
unsigned int n = ws->n_bytes;
if (max_len < n) {
n = max_len;
}
if (n > 0) {
memcpy(p_msg, ws->buf, n);
}
ws->n_bytes -= n;
return n;
}
#endif
#if HAVE_DECL_TIOCM_RTS
static void _modbus_rtu_ioctl_rts(modbus_t *ctx, int on)
{
int fd = ctx->s;
int flags;
ioctl(fd, TIOCMGET, &flags);
if (on) {
flags |= TIOCM_RTS;
} else {
flags &= ~TIOCM_RTS;
}
ioctl(fd, TIOCMSET, &flags);
}
#endif
static ssize_t _modbus_rtu_send(modbus_t *ctx, const uint8_t *req, int req_length)
{
#if defined(_WIN32)
modbus_rtu_t *ctx_rtu = ctx->backend_data;
DWORD n_bytes = 0;
return (WriteFile(ctx_rtu->w_ser.fd, req, req_length, &n_bytes, NULL)) ? (ssize_t)n_bytes : -1;
#else
#if HAVE_DECL_TIOCM_RTS
modbus_rtu_t *ctx_rtu = ctx->backend_data;
if (ctx_rtu->rts != MODBUS_RTU_RTS_NONE) {
ssize_t size;
if (ctx->debug) {
fprintf(stderr, "Sending request using RTS signal\n");
}
ctx_rtu->set_rts(ctx, ctx_rtu->rts == MODBUS_RTU_RTS_UP);
usleep(ctx_rtu->rts_delay);
size = write(ctx->s, req, req_length);
usleep(ctx_rtu->onebyte_time * req_length + ctx_rtu->rts_delay);
ctx_rtu->set_rts(ctx, ctx_rtu->rts != MODBUS_RTU_RTS_UP);
return size;
} else {
#endif
return write(ctx->s, req, req_length);
#if HAVE_DECL_TIOCM_RTS
}
#endif
#endif
}
static int _modbus_rtu_receive(modbus_t *ctx, uint8_t *req)
{
int rc;
modbus_rtu_t *ctx_rtu = ctx->backend_data;
if (ctx_rtu->confirmation_to_ignore) {
_modbus_receive_msg(ctx, req, MSG_CONFIRMATION);
/* Ignore errors and reset the flag */
ctx_rtu->confirmation_to_ignore = FALSE;
rc = 0;
if (ctx->debug) {
printf("Confirmation to ignore\n");
}
} else {
rc = _modbus_receive_msg(ctx, req, MSG_INDICATION);
if (rc == 0) {
/* The next expected message is a confirmation to ignore */
ctx_rtu->confirmation_to_ignore = TRUE;
}
}
return rc;
}
static ssize_t _modbus_rtu_recv(modbus_t *ctx, uint8_t *rsp, int rsp_length)
{
#if defined(_WIN32)
return win32_ser_read(&((modbus_rtu_t *)ctx->backend_data)->w_ser, rsp, rsp_length);
#else
return read(ctx->s, rsp, rsp_length);
#endif
}
static int _modbus_rtu_flush(modbus_t *);
static int _modbus_rtu_pre_check_confirmation(modbus_t *ctx, const uint8_t *req,
const uint8_t *rsp, int rsp_length)
{
/* Check responding slave is the slave we requested (except for broacast
* request) */
if (req[0] != rsp[0] && req[0] != MODBUS_BROADCAST_ADDRESS) {
if (ctx->debug) {
fprintf(stderr,
"The responding slave %d isn't the requested slave %d\n",
rsp[0], req[0]);
}
errno = EMBBADSLAVE;
return -1;
} else {
return 0;
}
}
/* The check_crc16 function shall return 0 if the message is ignored and the
message length if the CRC is valid. Otherwise it shall return -1 and set
errno to EMBBADCRC. */
static int _modbus_rtu_check_integrity(modbus_t *ctx, uint8_t *msg,
const int msg_length)
{
uint16_t crc_calculated;
uint16_t crc_received;
int slave = msg[0];
/* Filter on the Modbus unit identifier (slave) in RTU mode to avoid useless
* CRC computing. */
if (slave != ctx->slave && slave != MODBUS_BROADCAST_ADDRESS) {
if (ctx->debug) {
printf("Request for slave %d ignored (not %d)\n", slave, ctx->slave);
}
/* Following call to check_confirmation handles this error */
return 0;
}
crc_calculated = crc16(msg, msg_length - 2);
crc_received = (msg[msg_length - 1] << 8) | msg[msg_length - 2];
/* Check CRC of msg */
if (crc_calculated == crc_received) {
return msg_length;
} else {
if (ctx->debug) {
fprintf(stderr, "ERROR CRC received 0x%0X != CRC calculated 0x%0X\n",
crc_received, crc_calculated);
}
if (ctx->error_recovery & MODBUS_ERROR_RECOVERY_PROTOCOL) {
_modbus_rtu_flush(ctx);
}
errno = EMBBADCRC;
return -1;
}
}
/* Sets up a serial port for RTU communications */
static int _modbus_rtu_connect(modbus_t *ctx)
{
#if defined(_WIN32)
DCB dcb;
#else
struct termios tios;
speed_t speed;
int flags;
#endif
modbus_rtu_t *ctx_rtu = ctx->backend_data;
if (ctx->debug) {
printf("Opening %s at %d bauds (%c, %d, %d)\n",
ctx_rtu->device, ctx_rtu->baud, ctx_rtu->parity,
ctx_rtu->data_bit, ctx_rtu->stop_bit);
}
#if defined(_WIN32)
/* Some references here:
* http://msdn.microsoft.com/en-us/library/aa450602.aspx
*/
win32_ser_init(&ctx_rtu->w_ser);
/* ctx_rtu->device should contain a string like "COMxx:" xx being a decimal
* number */
ctx_rtu->w_ser.fd = CreateFileA(ctx_rtu->device,
GENERIC_READ | GENERIC_WRITE,
0,
NULL,
OPEN_EXISTING,
0,
NULL);
/* Error checking */
if (ctx_rtu->w_ser.fd == INVALID_HANDLE_VALUE) {
if (ctx->debug) {
fprintf(stderr, "ERROR Can't open the device %s (LastError %d)\n",
ctx_rtu->device, (int)GetLastError());
}
return -1;
}
/* Save params */
ctx_rtu->old_dcb.DCBlength = sizeof(DCB);
if (!GetCommState(ctx_rtu->w_ser.fd, &ctx_rtu->old_dcb)) {
if (ctx->debug) {
fprintf(stderr, "ERROR Error getting configuration (LastError %d)\n",
(int)GetLastError());
}
CloseHandle(ctx_rtu->w_ser.fd);
ctx_rtu->w_ser.fd = INVALID_HANDLE_VALUE;
return -1;
}
/* Build new configuration (starting from current settings) */
dcb = ctx_rtu->old_dcb;
/* Speed setting */
switch (ctx_rtu->baud) {
case 110:
dcb.BaudRate = CBR_110;
break;
case 300:
dcb.BaudRate = CBR_300;
break;
case 600:
dcb.BaudRate = CBR_600;
break;
case 1200:
dcb.BaudRate = CBR_1200;
break;
case 2400:
dcb.BaudRate = CBR_2400;
break;
case 4800:
dcb.BaudRate = CBR_4800;
break;
case 9600:
dcb.BaudRate = CBR_9600;
break;
case 14400:
dcb.BaudRate = CBR_14400;
break;
case 19200:
dcb.BaudRate = CBR_19200;
break;
case 38400:
dcb.BaudRate = CBR_38400;
break;
case 57600:
dcb.BaudRate = CBR_57600;
break;
case 115200:
dcb.BaudRate = CBR_115200;
break;
case 230400:
/* CBR_230400 - not defined */
dcb.BaudRate = 230400;
break;
case 250000:
dcb.BaudRate = 250000;
break;
case 256000:
dcb.BaudRate = 256000;
break;
case 460800:
dcb.BaudRate = 460800;
break;
case 500000:
dcb.BaudRate = 500000;
break;
case 921600:
dcb.BaudRate = 921600;
break;
case 1000000:
dcb.BaudRate = 1000000;
break;
default:
dcb.BaudRate = CBR_9600;
if (ctx->debug) {
fprintf(stderr, "WARNING Unknown baud rate %d for %s (B9600 used)\n",
ctx_rtu->baud, ctx_rtu->device);
}
}
/* Data bits */
switch (ctx_rtu->data_bit) {
case 5:
dcb.ByteSize = 5;
break;
case 6:
dcb.ByteSize = 6;
break;
case 7:
dcb.ByteSize = 7;
break;
case 8:
default:
dcb.ByteSize = 8;
break;
}
/* Stop bits */
if (ctx_rtu->stop_bit == 1)
dcb.StopBits = ONESTOPBIT;
else /* 2 */
dcb.StopBits = TWOSTOPBITS;
/* Parity */
if (ctx_rtu->parity == 'N') {
dcb.Parity = NOPARITY;
dcb.fParity = FALSE;
} else if (ctx_rtu->parity == 'E') {
dcb.Parity = EVENPARITY;
dcb.fParity = TRUE;
} else {
/* odd */
dcb.Parity = ODDPARITY;
dcb.fParity = TRUE;
}
/* Hardware handshaking left as default settings retrieved */
/* No software handshaking */
dcb.fTXContinueOnXoff = TRUE;
dcb.fOutX = FALSE;
dcb.fInX = FALSE;
/* Binary mode (it's the only supported on Windows anyway) */
dcb.fBinary = TRUE;
/* Don't want errors to be blocking */
dcb.fAbortOnError = FALSE;
/* Setup port */
if (!SetCommState(ctx_rtu->w_ser.fd, &dcb)) {
if (ctx->debug) {
fprintf(stderr, "ERROR Error setting new configuration (LastError %d)\n",
(int)GetLastError());
}
CloseHandle(ctx_rtu->w_ser.fd);
ctx_rtu->w_ser.fd = INVALID_HANDLE_VALUE;
return -1;
}
#else
/* The O_NOCTTY flag tells UNIX that this program doesn't want
to be the "controlling terminal" for that port. If you
don't specify this then any input (such as keyboard abort
signals and so forth) will affect your process
Timeouts are ignored in canonical input mode or when the
NDELAY option is set on the file via open or fcntl */
flags = O_RDWR | O_NOCTTY | O_NDELAY | O_EXCL;
#ifdef O_CLOEXEC
flags |= O_CLOEXEC;
#endif
ctx->s = open(ctx_rtu->device, flags);
if (ctx->s == -1) {
if (ctx->debug) {
fprintf(stderr, "ERROR Can't open the device %s (%s)\n",
ctx_rtu->device, strerror(errno));
}
return -1;
}
/* Save */
tcgetattr(ctx->s, &ctx_rtu->old_tios);
memset(&tios, 0, sizeof(struct termios));
/* C_ISPEED Input baud (new interface)
C_OSPEED Output baud (new interface)
*/
switch (ctx_rtu->baud) {
case 110:
speed = B110;
break;
case 300:
speed = B300;
break;
case 600:
speed = B600;
break;
case 1200:
speed = B1200;
break;
case 2400:
speed = B2400;
break;
case 4800:
speed = B4800;
break;
case 9600:
speed = B9600;
break;
case 19200:
speed = B19200;
break;
case 38400:
speed = B38400;
break;
#ifdef B57600
case 57600:
speed = B57600;
break;
#endif
#ifdef B115200
case 115200:
speed = B115200;
break;
#endif
#ifdef B230400
case 230400:
speed = B230400;
break;
#endif
#ifdef B460800
case 460800:
speed = B460800;
break;
#endif
#ifdef B500000
case 500000:
speed = B500000;
break;
#endif
#ifdef B576000
case 576000:
speed = B576000;
break;
#endif
#ifdef B921600
case 921600:
speed = B921600;
break;
#endif
#ifdef B1000000
case 1000000:
speed = B1000000;
break;
#endif
#ifdef B1152000
case 1152000:
speed = B1152000;
break;
#endif
#ifdef B1500000
case 1500000:
speed = B1500000;
break;
#endif
#ifdef B2500000
case 2500000:
speed = B2500000;
break;
#endif
#ifdef B3000000
case 3000000:
speed = B3000000;
break;
#endif
#ifdef B3500000
case 3500000:
speed = B3500000;
break;
#endif
#ifdef B4000000
case 4000000:
speed = B4000000;
break;
#endif
default:
speed = B9600;
if (ctx->debug) {
fprintf(stderr,
"WARNING Unknown baud rate %d for %s (B9600 used)\n",
ctx_rtu->baud, ctx_rtu->device);
}
}
/* Set the baud rate */
if ((cfsetispeed(&tios, speed) < 0) ||
(cfsetospeed(&tios, speed) < 0)) {
close(ctx->s);
ctx->s = -1;
return -1;
}
/* C_CFLAG Control options
CLOCAL Local line - do not change "owner" of port
CREAD Enable receiver
*/
tios.c_cflag |= (CREAD | CLOCAL);
/* CSIZE, HUPCL, CRTSCTS (hardware flow control) */
/* Set data bits (5, 6, 7, 8 bits)
CSIZE Bit mask for data bits
*/
tios.c_cflag &= ~CSIZE;
switch (ctx_rtu->data_bit) {
case 5:
tios.c_cflag |= CS5;
break;
case 6:
tios.c_cflag |= CS6;
break;
case 7:
tios.c_cflag |= CS7;
break;
case 8:
default:
tios.c_cflag |= CS8;
break;
}
/* Stop bit (1 or 2) */
if (ctx_rtu->stop_bit == 1)
tios.c_cflag &=~ CSTOPB;
else /* 2 */
tios.c_cflag |= CSTOPB;
/* PARENB Enable parity bit
PARODD Use odd parity instead of even */
if (ctx_rtu->parity == 'N') {
/* None */
tios.c_cflag &=~ PARENB;
} else if (ctx_rtu->parity == 'E') {
/* Even */
tios.c_cflag |= PARENB;
tios.c_cflag &=~ PARODD;
} else {
/* Odd */
tios.c_cflag |= PARENB;
tios.c_cflag |= PARODD;
}
/* Read the man page of termios if you need more information. */
/* This field isn't used on POSIX systems
tios.c_line = 0;
*/
/* C_LFLAG Line options
ISIG Enable SIGINTR, SIGSUSP, SIGDSUSP, and SIGQUIT signals
ICANON Enable canonical input (else raw)
XCASE Map uppercase \lowercase (obsolete)
ECHO Enable echoing of input characters
ECHOE Echo erase character as BS-SP-BS
ECHOK Echo NL after kill character
ECHONL Echo NL
NOFLSH Disable flushing of input buffers after
interrupt or quit characters
IEXTEN Enable extended functions
ECHOCTL Echo control characters as ^char and delete as ~?
ECHOPRT Echo erased character as character erased
ECHOKE BS-SP-BS entire line on line kill
FLUSHO Output being flushed
PENDIN Retype pending input at next read or input char
TOSTOP Send SIGTTOU for background output
Canonical input is line-oriented. Input characters are put
into a buffer which can be edited interactively by the user
until a CR (carriage return) or LF (line feed) character is
received.
Raw input is unprocessed. Input characters are passed
through exactly as they are received, when they are
received. Generally you'll deselect the ICANON, ECHO,
ECHOE, and ISIG options when using raw input
*/
/* Raw input */
tios.c_lflag &= ~(ICANON | ECHO | ECHOE | ISIG);
/* C_IFLAG Input options
Constant Description
INPCK Enable parity check
IGNPAR Ignore parity errors
PARMRK Mark parity errors
ISTRIP Strip parity bits
IXON Enable software flow control (outgoing)
IXOFF Enable software flow control (incoming)
IXANY Allow any character to start flow again
IGNBRK Ignore break condition
BRKINT Send a SIGINT when a break condition is detected
INLCR Map NL to CR
IGNCR Ignore CR
ICRNL Map CR to NL
IUCLC Map uppercase to lowercase
IMAXBEL Echo BEL on input line too long
*/
if (ctx_rtu->parity == 'N') {
/* None */
tios.c_iflag &= ~INPCK;
} else {
tios.c_iflag |= INPCK;
}
/* Software flow control is disabled */
tios.c_iflag &= ~(IXON | IXOFF | IXANY);
/* C_OFLAG Output options
OPOST Postprocess output (not set = raw output)
ONLCR Map NL to CR-NL
ONCLR ant others needs OPOST to be enabled
*/
/* Raw output */
tios.c_oflag &=~ OPOST;
/* C_CC Control characters
VMIN Minimum number of characters to read
VTIME Time to wait for data (tenths of seconds)
UNIX serial interface drivers provide the ability to
specify character and packet timeouts. Two elements of the
c_cc array are used for timeouts: VMIN and VTIME. Timeouts
are ignored in canonical input mode or when the NDELAY
option is set on the file via open or fcntl.
VMIN specifies the minimum number of characters to read. If
it is set to 0, then the VTIME value specifies the time to
wait for every character read. Note that this does not mean
that a read call for N bytes will wait for N characters to
come in. Rather, the timeout will apply to the first
character and the read call will return the number of
characters immediately available (up to the number you
request).
If VMIN is non-zero, VTIME specifies the time to wait for
the first character read. If a character is read within the
time given, any read will block (wait) until all VMIN
characters are read. That is, once the first character is
read, the serial interface driver expects to receive an
entire packet of characters (VMIN bytes total). If no
character is read within the time allowed, then the call to
read returns 0. This method allows you to tell the serial
driver you need exactly N bytes and any read call will
return 0 or N bytes. However, the timeout only applies to
the first character read, so if for some reason the driver
misses one character inside the N byte packet then the read
call could block forever waiting for additional input
characters.
VTIME specifies the amount of time to wait for incoming
characters in tenths of seconds. If VTIME is set to 0 (the
default), reads will block (wait) indefinitely unless the
NDELAY option is set on the port with open or fcntl.
*/
/* Unused because we use open with the NDELAY option */
tios.c_cc[VMIN] = 0;
tios.c_cc[VTIME] = 0;
if (tcsetattr(ctx->s, TCSANOW, &tios) < 0) {
close(ctx->s);
ctx->s = -1;
return -1;
}
#endif
return 0;
}
int modbus_rtu_set_serial_mode(modbus_t *ctx, int mode)
{
if (ctx == NULL) {
errno = EINVAL;
return -1;
}
if (ctx->backend->backend_type == _MODBUS_BACKEND_TYPE_RTU) {
#if HAVE_DECL_TIOCSRS485
modbus_rtu_t *ctx_rtu = ctx->backend_data;
struct serial_rs485 rs485conf;
if (mode == MODBUS_RTU_RS485) {
// Get
if (ioctl(ctx->s, TIOCGRS485, &rs485conf) < 0) {
return -1;
}
// Set
rs485conf.flags |= SER_RS485_ENABLED;
if (ioctl(ctx->s, TIOCSRS485, &rs485conf) < 0) {
return -1;
}
ctx_rtu->serial_mode = MODBUS_RTU_RS485;
return 0;
} else if (mode == MODBUS_RTU_RS232) {
/* Turn off RS485 mode only if required */
if (ctx_rtu->serial_mode == MODBUS_RTU_RS485) {
/* The ioctl call is avoided because it can fail on some RS232 ports */
if (ioctl(ctx->s, TIOCGRS485, &rs485conf) < 0) {
return -1;
}
rs485conf.flags &= ~SER_RS485_ENABLED;
if (ioctl(ctx->s, TIOCSRS485, &rs485conf) < 0) {
return -1;
}
}
ctx_rtu->serial_mode = MODBUS_RTU_RS232;
return 0;
}
#else
if (ctx->debug) {
fprintf(stderr, "This function isn't supported on your platform\n");
}
errno = ENOTSUP;
return -1;
#endif
}
/* Wrong backend and invalid mode specified */
errno = EINVAL;
return -1;
}
int modbus_rtu_get_serial_mode(modbus_t *ctx)
{
if (ctx == NULL) {
errno = EINVAL;
return -1;
}
if (ctx->backend->backend_type == _MODBUS_BACKEND_TYPE_RTU) {
#if HAVE_DECL_TIOCSRS485
modbus_rtu_t *ctx_rtu = ctx->backend_data;
return ctx_rtu->serial_mode;
#else
if (ctx->debug) {
fprintf(stderr, "This function isn't supported on your platform\n");
}
errno = ENOTSUP;
return -1;
#endif
} else {
errno = EINVAL;
return -1;
}
}
int modbus_rtu_get_rts(modbus_t *ctx)
{
if (ctx == NULL) {
errno = EINVAL;
return -1;
}
if (ctx->backend->backend_type == _MODBUS_BACKEND_TYPE_RTU) {
#if HAVE_DECL_TIOCM_RTS
modbus_rtu_t *ctx_rtu = ctx->backend_data;
return ctx_rtu->rts;
#else
if (ctx->debug) {
fprintf(stderr, "This function isn't supported on your platform\n");
}
errno = ENOTSUP;
return -1;
#endif
} else {
errno = EINVAL;
return -1;
}
}
int modbus_rtu_set_rts(modbus_t *ctx, int mode)
{
if (ctx == NULL) {
errno = EINVAL;
return -1;
}
if (ctx->backend->backend_type == _MODBUS_BACKEND_TYPE_RTU) {
#if HAVE_DECL_TIOCM_RTS
modbus_rtu_t *ctx_rtu = ctx->backend_data;
if (mode == MODBUS_RTU_RTS_NONE || mode == MODBUS_RTU_RTS_UP ||
mode == MODBUS_RTU_RTS_DOWN) {
ctx_rtu->rts = mode;
/* Set the RTS bit in order to not reserve the RS485 bus */
ctx_rtu->set_rts(ctx, ctx_rtu->rts != MODBUS_RTU_RTS_UP);
return 0;
} else {
errno = EINVAL;
return -1;
}
#else
if (ctx->debug) {
fprintf(stderr, "This function isn't supported on your platform\n");
}
errno = ENOTSUP;
return -1;
#endif
}
/* Wrong backend or invalid mode specified */
errno = EINVAL;
return -1;
}
int modbus_rtu_set_custom_rts(modbus_t *ctx, void (*set_rts) (modbus_t *ctx, int on))
{
if (ctx == NULL) {
errno = EINVAL;
return -1;
}
if (ctx->backend->backend_type == _MODBUS_BACKEND_TYPE_RTU) {
#if HAVE_DECL_TIOCM_RTS
modbus_rtu_t *ctx_rtu = ctx->backend_data;
ctx_rtu->set_rts = set_rts;
return 0;
#else
if (ctx->debug) {
fprintf(stderr, "This function isn't supported on your platform\n");
}
errno = ENOTSUP;
return -1;
#endif
} else {
errno = EINVAL;
return -1;
}
}
int modbus_rtu_get_rts_delay(modbus_t *ctx)
{
if (ctx == NULL) {
errno = EINVAL;
return -1;
}
if (ctx->backend->backend_type == _MODBUS_BACKEND_TYPE_RTU) {
#if HAVE_DECL_TIOCM_RTS
modbus_rtu_t *ctx_rtu;
ctx_rtu = (modbus_rtu_t *)ctx->backend_data;
return ctx_rtu->rts_delay;
#else
if (ctx->debug) {
fprintf(stderr, "This function isn't supported on your platform\n");
}
errno = ENOTSUP;
return -1;
#endif
} else {
errno = EINVAL;
return -1;
}
}
int modbus_rtu_set_rts_delay(modbus_t *ctx, int us)
{
if (ctx == NULL || us < 0) {
errno = EINVAL;
return -1;
}
if (ctx->backend->backend_type == _MODBUS_BACKEND_TYPE_RTU) {
#if HAVE_DECL_TIOCM_RTS
modbus_rtu_t *ctx_rtu;
ctx_rtu = (modbus_rtu_t *)ctx->backend_data;
ctx_rtu->rts_delay = us;
return 0;
#else
if (ctx->debug) {
fprintf(stderr, "This function isn't supported on your platform\n");
}
errno = ENOTSUP;
return -1;
#endif
} else {
errno = EINVAL;
return -1;
}
}
static void _modbus_rtu_close(modbus_t *ctx)
{
/* Restore line settings and close file descriptor in RTU mode */
modbus_rtu_t *ctx_rtu = ctx->backend_data;
#if defined(_WIN32)
/* Revert settings */
if (!SetCommState(ctx_rtu->w_ser.fd, &ctx_rtu->old_dcb) && ctx->debug) {
fprintf(stderr, "ERROR Couldn't revert to configuration (LastError %d)\n",
(int)GetLastError());
}
if (!CloseHandle(ctx_rtu->w_ser.fd) && ctx->debug) {
fprintf(stderr, "ERROR Error while closing handle (LastError %d)\n",
(int)GetLastError());
}
#else
if (ctx->s != -1) {
tcsetattr(ctx->s, TCSANOW, &ctx_rtu->old_tios);
close(ctx->s);
ctx->s = -1;
}
#endif
}
static int _modbus_rtu_flush(modbus_t *ctx)
{
#if defined(_WIN32)
modbus_rtu_t *ctx_rtu = ctx->backend_data;
ctx_rtu->w_ser.n_bytes = 0;
return (PurgeComm(ctx_rtu->w_ser.fd, PURGE_RXCLEAR) == FALSE);
#else
return tcflush(ctx->s, TCIOFLUSH);
#endif
}
static int _modbus_rtu_select(modbus_t *ctx, fd_set *rset,
struct timeval *tv, int length_to_read)
{
int s_rc;
#if defined(_WIN32)
s_rc = win32_ser_select(&((modbus_rtu_t *)ctx->backend_data)->w_ser,
length_to_read, tv);
if (s_rc == 0) {
errno = ETIMEDOUT;
return -1;
}
if (s_rc < 0) {
return -1;
}
#else
while ((s_rc = select(ctx->s+1, rset, NULL, NULL, tv)) == -1) {
if (errno == EINTR) {
if (ctx->debug) {
fprintf(stderr, "A non blocked signal was caught\n");
}
/* Necessary after an error */
FD_ZERO(rset);
FD_SET(ctx->s, rset);
} else {
return -1;
}
}
if (s_rc == 0) {
/* Timeout */
errno = ETIMEDOUT;
return -1;
}
#endif
return s_rc;
}
static void _modbus_rtu_free(modbus_t *ctx) {
if (ctx->backend_data) {
free(((modbus_rtu_t *)ctx->backend_data)->device);
free(ctx->backend_data);
}
free(ctx);
}
const modbus_backend_t _modbus_rtu_backend = {
_MODBUS_BACKEND_TYPE_RTU,
_MODBUS_RTU_HEADER_LENGTH,
_MODBUS_RTU_CHECKSUM_LENGTH,
MODBUS_RTU_MAX_ADU_LENGTH,
_modbus_set_slave,
_modbus_rtu_build_request_basis,
_modbus_rtu_build_response_basis,
_modbus_rtu_prepare_response_tid,
_modbus_rtu_send_msg_pre,
_modbus_rtu_send,
_modbus_rtu_receive,
_modbus_rtu_recv,
_modbus_rtu_check_integrity,
_modbus_rtu_pre_check_confirmation,
_modbus_rtu_connect,
_modbus_rtu_close,
_modbus_rtu_flush,
_modbus_rtu_select,
_modbus_rtu_free
};
modbus_t* modbus_new_rtu(const char *device,
int baud, char parity, int data_bit,
int stop_bit)
{
modbus_t *ctx;
modbus_rtu_t *ctx_rtu;
/* Check device argument */
if (device == NULL || *device == 0) {
fprintf(stderr, "The device string is empty\n");
errno = EINVAL;
return NULL;
}
/* Check baud argument */
if (baud == 0) {
fprintf(stderr, "The baud rate value must not be zero\n");
errno = EINVAL;
return NULL;
}
ctx = (modbus_t *)malloc(sizeof(modbus_t));
if (ctx == NULL) {
return NULL;
}
_modbus_init_common(ctx);
ctx->backend = &_modbus_rtu_backend;
ctx->backend_data = (modbus_rtu_t *)malloc(sizeof(modbus_rtu_t));
if (ctx->backend_data == NULL) {
modbus_free(ctx);
errno = ENOMEM;
return NULL;
}
ctx_rtu = (modbus_rtu_t *)ctx->backend_data;
/* Device name and \0 */
ctx_rtu->device = (char *)malloc((strlen(device) + 1) * sizeof(char));
if (ctx_rtu->device == NULL) {
modbus_free(ctx);
errno = ENOMEM;
return NULL;
}
strcpy(ctx_rtu->device, device);
ctx_rtu->baud = baud;
if (parity == 'N' || parity == 'E' || parity == 'O') {
ctx_rtu->parity = parity;
} else {
modbus_free(ctx);
errno = EINVAL;
return NULL;
}
ctx_rtu->data_bit = data_bit;
ctx_rtu->stop_bit = stop_bit;
#if HAVE_DECL_TIOCSRS485
/* The RS232 mode has been set by default */
ctx_rtu->serial_mode = MODBUS_RTU_RS232;
#endif
#if HAVE_DECL_TIOCM_RTS
/* The RTS use has been set by default */
ctx_rtu->rts = MODBUS_RTU_RTS_NONE;
/* Calculate estimated time in micro second to send one byte */
ctx_rtu->onebyte_time = 1000000 * (1 + data_bit + (parity == 'N' ? 0 : 1) + stop_bit) / baud;
/* The internal function is used by default to set RTS */
ctx_rtu->set_rts = _modbus_rtu_ioctl_rts;
/* The delay before and after transmission when toggling the RTS pin */
ctx_rtu->rts_delay = ctx_rtu->onebyte_time;
#endif
ctx_rtu->confirmation_to_ignore = FALSE;
return ctx;
}