Package | Description |
---|---|
com.mxgraph.analysis |
This package provides various algorithms for graph analysis, such as
shortest path and minimum spanning tree.
|
com.mxgraph.costfunction | |
com.mxgraph.generatorfunction |
Modifier and Type | Class | Description |
---|---|---|
class |
mxConstantCostFunction |
Implements a cost function for a constant cost per traversed cell.
|
class |
mxDistanceCostFunction |
Implements a cost function for the Euclidean length of an edge.
|
Modifier and Type | Method | Description |
---|---|---|
java.lang.Object[] |
mxGraphAnalysis.getMinimumSpanningTree(mxGraph graph,
java.lang.Object[] v,
mxICostFunction cf,
boolean directed) |
Returns the minimum spanning tree (MST) for the graph defined by G=(E,V).
|
java.lang.Object[] |
mxGraphAnalysis.getMinimumSpanningTree(mxGraph graph,
java.lang.Object[] v,
java.lang.Object[] e,
mxICostFunction cf) |
Returns the minimum spanning tree (MST) for the graph defined by G=(E,V).
|
java.lang.Object[] |
mxGraphAnalysis.getShortestPath(mxGraph graph,
java.lang.Object from,
java.lang.Object to,
mxICostFunction cf,
int steps,
boolean directed) |
Returns the shortest path between two cells or their descendants
represented as an array of edges in order of traversal.
|
mxCellState[] |
mxGraphAnalysis.sort(mxCellState[] states,
mxICostFunction cf) |
Returns a sorted set for
cells with respect to
cf . |
double |
mxGraphAnalysis.sum(mxCellState[] states,
mxICostFunction cf) |
Returns the sum of all cost for
cells with respect to
cf . |
Modifier and Type | Class | Description |
---|---|---|
class |
mxConstCostFunction |
|
class |
mxCostFunction |
|
class |
mxDoubleValCostFunction |
A cost function that assumes that edge value is of type "double" or "String" and returns that value.
|
Modifier and Type | Class | Description |
---|---|---|
class |
mxGeneratorConstFunction |
|
class |
mxGeneratorFunction |
|
class |
mxGeneratorRandomFunction |
|
class |
mxGeneratorRandomIntFunction |
Copyright (c) 2010-2017 Gaudenz Alder, JGraph Ltd. All rights reserved.