diff --git a/arduino/main/main.ino b/arduino/main/main.ino index b21f457..ec92ffa 100644 --- a/arduino/main/main.ino +++ b/arduino/main/main.ino @@ -17,7 +17,6 @@ AS5600霍尔传感器 SDA-23 SCL-5 MPU6050六轴传感器 SDA-19 SCL-18 #include "EEPROM.h" Kalman kalmanZ; #define gyroZ_OFF -0.19 -#define FLAG_V 0 /* ----IMU Data---- */ double accX, accY, accZ; @@ -50,14 +49,6 @@ TwoWire I2Ctwo = TwoWire(1); LowPassFilter lpf_throttle{0.00}; //倒立摆参数 -float LQR_K1_1 = 4; //摇摆到平衡 -float LQR_K1_2 = 1.5; // -float LQR_K1_3 = 0.30; // - -float LQR_K2_1 = 3.49; //平衡态 -float LQR_K2_2 = 0.26; // -float LQR_K2_3 = 0.15; // - float LQR_K3_1 = 10; //摇摆到平衡 float LQR_K3_2 = 1.7; // float LQR_K3_3 = 1.75; // @@ -81,27 +72,35 @@ float v_p_2 = 0.2; //命令设置 Command comm; bool Motor_enable_flag = 0; +int test_flag = 0; void do_TA(char* cmd) { comm.scalar(&target_angle, cmd);EEPROM.writeFloat(0, target_angle); } void do_SV(char* cmd) { comm.scalar(&swing_up_voltage, cmd); EEPROM.writeFloat(4, swing_up_voltage); } void do_SA(char* cmd) { comm.scalar(&swing_up_angle, cmd);EEPROM.writeFloat(8, swing_up_angle); } - void do_START(char* cmd) { wifi_flag = !wifi_flag; } void do_MOTOR(char* cmd) { if(Motor_enable_flag) - digitalWrite(22,HIGH); + motor.enable(); else - digitalWrite(22,LOW); + motor.disable(); Motor_enable_flag = !Motor_enable_flag; } -#if FLAG_V -void do_K11(char* cmd) { comm.scalar(&LQR_K1_1, cmd); } -void do_K12(char* cmd) { comm.scalar(&LQR_K1_2, cmd); } -void do_K13(char* cmd) { comm.scalar(&LQR_K1_3, cmd); } -void do_K21(char* cmd) { comm.scalar(&LQR_K2_1, cmd); } -void do_K22(char* cmd) { comm.scalar(&LQR_K2_2, cmd); } -void do_K23(char* cmd) { comm.scalar(&LQR_K2_3, cmd); } -#else +void do_TVQ(char* cmd) +{ + if(test_flag == 1) + test_flag = 0; + else + test_flag = 1; +} +void do_TVV(char* cmd) +{ + if(test_flag == 2) + test_flag = 0; + else + test_flag = 2; +} +void do_VV(char* cmd) { comm.scalar(&target_velocity, cmd); } +void do_VQ(char* cmd) { comm.scalar(&target_voltage, cmd); } void do_vp1(char* cmd) { comm.scalar(&v_p_1, cmd); EEPROM.writeFloat(12, v_p_1);} void do_vi1(char* cmd) { comm.scalar(&v_i_1, cmd);EEPROM.writeFloat(16, v_i_1); } void do_vp2(char* cmd) { comm.scalar(&v_p_2, cmd); EEPROM.writeFloat(20, v_p_2);} @@ -113,8 +112,6 @@ void do_K33(char* cmd) { comm.scalar(&LQR_K3_3, cmd); } void do_K41(char* cmd) { comm.scalar(&LQR_K4_1, cmd); } void do_K42(char* cmd) { comm.scalar(&LQR_K4_2, cmd); } void do_K43(char* cmd) { comm.scalar(&LQR_K4_3, cmd); } -#endif - void onPacketCallBack(AsyncUDPPacket packet) { @@ -171,15 +168,11 @@ if(j == 0) comm.add("MOTOR",do_MOTOR); comm.add("SV",do_SV); comm.add("SA",do_SA); - -#if FLAG_V //电压模式 - comm.add("K11",do_K11); - comm.add("K12",do_K12); - comm.add("K13",do_K13); - comm.add("K21",do_K21); - comm.add("K22",do_K22); - comm.add("K23",do_K23); -#else //速度模式 + comm.add("TVQ",do_TVQ); + comm.add("TVV",do_TVV); + comm.add("VV",do_VV); + comm.add("VQ",do_VQ); +//速度环参数 comm.add("VP1",do_vp1); comm.add("VI1",do_vi1); comm.add("VP2",do_vp2); @@ -191,8 +184,8 @@ if(j == 0) comm.add("K41",do_K41); comm.add("K42",do_K42); comm.add("K43",do_K43); -#endif - // kalman mpu6050 init + + // kalman mpu6050 init Wire.begin(19, 18,400000);// Set I2C frequency to 400kHz i2cData[0] = 7; // Set the sample rate to 1000Hz - 8kHz/(7+1) = 1000Hz i2cData[1] = 0x00; // Disable FSYNC and set 260 Hz Acc filtering, 256 Hz Gyro filtering, 8 KHz sampling @@ -202,7 +195,6 @@ if(j == 0) ; // Write to all four registers at once while (i2cWrite(0x6B, 0x01, true)) ; // PLL with X axis gyroscope reference and disable sleep mode - while (i2cRead(0x75, i2cData, 1)) ; if (i2cData[0] != 0x68) @@ -211,9 +203,7 @@ if(j == 0) while (1) ; } - delay(100); // Wait for sensor to stabilize - /* Set kalman and gyro starting angle */ while (i2cRead(0x3B, i2cData, 6)) ; @@ -221,10 +211,8 @@ if(j == 0) accY = (int16_t)((i2cData[2] << 8) | i2cData[3]); accZ = (int16_t)((i2cData[4] << 8) | i2cData[5]); double pitch = acc2rotation(accX, accY); - kalmanZ.setAngle(pitch); gyroZangle = pitch; - timer = micros(); Serial.println("kalman mpu6050 init"); @@ -254,21 +242,16 @@ if(j == 0) motor.foc_modulation = FOCModulationType::SpaceVectorPWM; //运动控制模式设置 -#if FLAG_V - motor.controller = MotionControlType::torque; -#else motor.controller = MotionControlType::velocity; //速度PI环设置 - motor.PID_velocity.P = 0.5; - motor.PID_velocity.I = 20; -#endif - + motor.PID_velocity.P = v_p_1; + motor.PID_velocity.I = v_i_1; //最大电机限制电机 motor.voltage_limit = 12; //速度低通滤波时间常数 - motor.LPF_velocity.Tf = 0.01; + motor.LPF_velocity.Tf = 0.02; //设置最大速度限制 motor.velocity_limit = 40; @@ -284,7 +267,6 @@ if(j == 0) Serial.println(F("Motor ready.")); Serial.println(F("Set the target velocity using serial terminal:")); -//digitalWrite(22,LOW); } char buf[255]; long loop_count = 0; @@ -322,65 +304,50 @@ void loop() { gyroZangle = kalAngleZ; float pendulum_angle = constrainAngle(fmod(kalAngleZ,120)-target_angle); -// FLAG_V为1时使用电压控制,为0时候速度控制 -#if FLAG_V - if (abs(pendulum_angle) < swing_up_angle) // if angle small enough stabilize 0.5~30°,1.5~90° - { - target_voltage = controllerLQR(pendulum_angle, gyroZrate, motor.shaftVelocity()); -// limit the voltage set to the motor - if (abs(target_voltage) > motor.voltage_limit * 0.7) - target_voltage = _sign(target_voltage) * motor.voltage_limit * 0.7; - } - else // else do swing-up - { // sets 1.5V to the motor in order to swing up - target_voltage = -_sign(gyroZrate) * swing_up_voltage; - } - - // set the target voltage to the motor - if (accZ < -13000 && ((accX * accX + accY * accY) > (14000 * 14000))) - { - motor.move(0); - } - else - { - motor.move(lpf_throttle(target_voltage)); - } - -#else -if (abs(pendulum_angle) < swing_up_angle) // if angle small enough stabilize 0.5~30°,1.5~90° - { - target_velocity = controllerLQR(pendulum_angle, gyroZrate, motor.shaftVelocity()); - if (abs(target_velocity) > 140) - target_velocity = _sign(target_velocity) * 140; - motor.controller = MotionControlType::velocity; - motor.move(target_velocity); - } - else // else do swing-up - { // sets 1.5V to the motor in order to swing up - motor.controller = MotionControlType::torque; - target_voltage = -_sign(gyroZrate) * swing_up_voltage; - motor.move(target_voltage); - } - -#endif + +// pendulum_angle当前角度与期望角度差值,在差值大的时候进行摇摆,差值小的时候LQR控制电机保持平衡 +if(test_flag == 0)//正常控制 +{ + if (abs(pendulum_angle) < swing_up_angle) // if angle small enough stabilize 0.5~30°,1.5~90° + { + target_velocity = controllerLQR(pendulum_angle, gyroZrate, motor.shaftVelocity()); + if (abs(target_velocity) > 140) + target_velocity = _sign(target_velocity) * 140; + + motor.controller = MotionControlType::velocity; + motor.move(target_velocity); + } + else // else do swing-up + { // sets swing_up_voltage to the motor in order to swing up + motor.controller = MotionControlType::torque; + target_voltage = -_sign(gyroZrate) * swing_up_voltage; + motor.move(target_voltage); + } +} +else if(test_flag == 1) +{ + motor.controller = MotionControlType::torque; + motor.move(target_voltage); +} +else +{ + motor.controller = MotionControlType::velocity; + motor.move(target_velocity); +} +//串口输出数据部分,不需要的情况可以改为0 #if 1 -//Serial.print(gyroZangle);Serial.print("\t"); Serial.print(pitch);Serial.print("\t"); Serial.print(kalAngleZ);Serial.print("\t"); - Serial.print(target_voltage);Serial.print("\t"); -// Serial.print(target_velocity);Serial.print("\t"); Serial.print(motor.shaft_velocity);Serial.print("\t"); Serial.print(motor.voltage.q);Serial.print("\t"); - Serial.print(target_angle);Serial.print("\t"); Serial.print(pendulum_angle);Serial.print("\t"); Serial.print(gyroZrate);Serial.print("\t"); Serial.print("\r\n"); #endif -// motor.move(target_velocity); - //可以使用该方法广播信息 + //可以使用该方法wifi发送udp信息 if(wifi_flag) { memset(buf, 0, strlen(buf)); @@ -453,19 +420,7 @@ float controllerLQR(float p_angle, float p_vel, float m_vel) stable = 1; } - //Serial.println(stable); float u; -#if FLAG_V - if (!stable) - { - u = LQR_K1_1 * p_angle + LQR_K1_2 * p_vel + LQR_K1_3 * m_vel; - } - else - { - //u = LQR_K1 * p_angle + LQR_K2 * p_vel + LQR_K3 * m_vel; - u = LQR_K2_1 * p_angle + LQR_K2_2 * p_vel + LQR_K2_3 * m_vel; - } -#else if (!stable) { motor.PID_velocity.P = v_p_1; @@ -479,7 +434,7 @@ float controllerLQR(float p_angle, float p_vel, float m_vel) //u = LQR_K1 * p_angle + LQR_K2 * p_vel + LQR_K3 * m_vel; u = LQR_K4_1 * p_angle + LQR_K4_2 * p_vel + LQR_K4_3 * m_vel; } -#endif + return u; } void wifi_print(char * s,double num)