master
parent
4d6025b854
commit
cde585d47e
|
@ -1,19 +1,22 @@
|
|||
/**
|
||||
Deng's FOC 闭环速度控制例程 测试库:SimpleFOC 2.1.1 测试硬件:灯哥开源FOC V1.0
|
||||
在串口窗口中输入:T+速度,就可以使得两个电机闭环转动
|
||||
比如让两个电机都以 10rad/s 的速度转动,则输入:T10
|
||||
在使用自己的电机时,请一定记得修改默认极对数,即 BLDCMotor(7) 中的值,设置为自己的极对数数字
|
||||
程序默认设置的供电电压为 16.8V,用其他电压供电请记得修改 voltage_power_supply , voltage_limit 变量中的值
|
||||
默认PID针对的电机是 GB6010 ,使用自己的电机需要修改PID参数,才能实现更好效果
|
||||
arduino开发环境-灯哥开源FOChttps://gitee.com/ream_d/Deng-s-foc-controller,并安装Kalman。
|
||||
FOC引脚32, 33, 25, 22 22为enable
|
||||
AS5600霍尔传感器 SDA-23 SCL-5 MPU6050六轴传感器 SDA-19 SCL-18
|
||||
本程序有两种平衡方式, FLAG_V为1时使用电压控制,为0时候速度控制。电压控制时LQR参数使用K1和K2,速度控制时LQR参数使用K3和K4
|
||||
在wifi上位机窗口中输入:TA+角度,就可以修改平衡角度
|
||||
比如让平衡角度为90度,则输入:TA90,并且会存入eeprom的位置0中 注:wifi发送命令不能过快,因为每次都会保存进eeprom
|
||||
在使用自己的电机时,请一定记得修改默认极对数,即 BLDCMotor(5) 中的值,设置为自己的极对数数字,磁铁数量/2
|
||||
程序默认设置的供电电压为 12V,用其他电压供电请记得修改 voltage_power_supply , voltage_limit 变量中的值
|
||||
默认PID针对的电机是 GB2204 ,使用自己的电机需要修改PID参数,才能实现更好效果
|
||||
*/
|
||||
#include <SimpleFOC.h>
|
||||
#include "Command.h"
|
||||
#include <WiFi.h>
|
||||
#include <AsyncUDP.h> //引用以使用异步UDP
|
||||
#include <Kalman.h> // Source: https://github.com/TKJElectronics/KalmanFilter
|
||||
#include "EEPROM.h"
|
||||
Kalman kalmanZ;
|
||||
#define gyroZ_OFF -0.19
|
||||
#define balance_voltage 10 //V
|
||||
/* ----IMU Data---- */
|
||||
|
||||
double accX, accY, accZ;
|
||||
|
@ -42,11 +45,7 @@ unsigned int localUdpPort = 2333; //本地端口号
|
|||
void wifi_print(char * s,double num);
|
||||
|
||||
MagneticSensorI2C sensor = MagneticSensorI2C(AS5600_I2C);
|
||||
float PID_P = 1; //
|
||||
float PID_I = 0; //
|
||||
float PID_D = 0; //
|
||||
TwoWire I2Ctwo = TwoWire(1);
|
||||
PIDController angle_pid = PIDController(PID_P, PID_I, PID_D, balance_voltage * 0.7, 20000);
|
||||
LowPassFilter lpf_throttle{0.00};
|
||||
#define FLAG_V 0
|
||||
//倒立摆参数
|
||||
|
@ -58,21 +57,29 @@ float LQR_K2_1 = 3.49; //平衡态
|
|||
float LQR_K2_2 = 0.26; //
|
||||
float LQR_K2_3 = 0.15; //
|
||||
|
||||
float LQR_K3_1 = 5.25; //平衡态
|
||||
float LQR_K3_1 = 5.25; //摇摆到平衡
|
||||
float LQR_K3_2 = 3.18; //
|
||||
float LQR_K3_3 = 1.86; //
|
||||
|
||||
float LQR_K4_1 = 2.4; //摇摆到平衡
|
||||
float LQR_K4_2 = 1.5; //
|
||||
float LQR_K4_3 = 1.42; //
|
||||
|
||||
//电机参数
|
||||
BLDCMotor motor = BLDCMotor(5);
|
||||
BLDCDriver3PWM driver = BLDCDriver3PWM(32, 33, 25, 22);
|
||||
float target_velocity = 0;
|
||||
float target_angle = 90;
|
||||
float target_angle = 89.3;
|
||||
float target_voltage = 0;
|
||||
float swing_up_voltage = 2;
|
||||
float swing_up_voltage = 1.8;
|
||||
float swing_up_angle = 18;
|
||||
//命令设置
|
||||
Command comm;
|
||||
bool Motor_enable_flag = 0;
|
||||
void do_TA(char* cmd) { comm.scalar(&target_angle, cmd); }
|
||||
void do_TA(char* cmd) { comm.scalar(&target_angle, cmd);EEPROM.writeFloat(0, target_angle); }
|
||||
void do_SV(char* cmd) { comm.scalar(&swing_up_voltage, cmd); EEPROM.writeFloat(4, swing_up_voltage); }
|
||||
void do_SA(char* cmd) { comm.scalar(&swing_up_angle, cmd);EEPROM.writeFloat(8, swing_up_angle); }
|
||||
|
||||
void do_START(char* cmd) { wifi_flag = !wifi_flag; }
|
||||
void do_MOTOR(char* cmd)
|
||||
{
|
||||
|
@ -82,7 +89,6 @@ void do_MOTOR(char* cmd)
|
|||
digitalWrite(22,LOW);
|
||||
Motor_enable_flag = !Motor_enable_flag;
|
||||
}
|
||||
void do_SW(char* cmd) { comm.scalar(&swing_up_voltage, cmd); }
|
||||
#if FLAG_V
|
||||
void do_K11(char* cmd) { comm.scalar(&LQR_K1_1, cmd); }
|
||||
void do_K12(char* cmd) { comm.scalar(&LQR_K1_2, cmd); }
|
||||
|
@ -91,12 +97,15 @@ void do_K21(char* cmd) { comm.scalar(&LQR_K2_1, cmd); }
|
|||
void do_K22(char* cmd) { comm.scalar(&LQR_K2_2, cmd); }
|
||||
void do_K23(char* cmd) { comm.scalar(&LQR_K2_3, cmd); }
|
||||
#else
|
||||
void do_vp(char* cmd) { comm.scalar(&motor.PID_velocity.P, cmd); }
|
||||
void do_vi(char* cmd) { comm.scalar(&motor.PID_velocity.I, cmd); }
|
||||
void do_vp(char* cmd) { comm.scalar(&motor.PID_velocity.P, cmd); EEPROM.writeFloat(12, motor.PID_velocity.P);}
|
||||
void do_vi(char* cmd) { comm.scalar(&motor.PID_velocity.I, cmd);EEPROM.writeFloat(16, motor.PID_velocity.I); }
|
||||
void do_tv(char* cmd) { comm.scalar(&target_velocity, cmd); }
|
||||
void do_K31(char* cmd) { comm.scalar(&LQR_K3_1, cmd); }
|
||||
void do_K32(char* cmd) { comm.scalar(&LQR_K3_2, cmd); }
|
||||
void do_K33(char* cmd) { comm.scalar(&LQR_K3_3, cmd); }
|
||||
void do_K41(char* cmd) { comm.scalar(&LQR_K4_1, cmd); }
|
||||
void do_K42(char* cmd) { comm.scalar(&LQR_K4_2, cmd); }
|
||||
void do_K43(char* cmd) { comm.scalar(&LQR_K4_3, cmd); }
|
||||
#endif
|
||||
|
||||
|
||||
|
@ -106,17 +115,28 @@ void onPacketCallBack(AsyncUDPPacket packet)
|
|||
da= (char*)(packet.data());
|
||||
Serial.println(da);
|
||||
comm.run(da);
|
||||
|
||||
EEPROM.commit();
|
||||
// packet.print("reply data");
|
||||
}
|
||||
// instantiate the commander
|
||||
void setup() {
|
||||
Serial.begin(115200);
|
||||
if (!EEPROM.begin(1000)) {
|
||||
Serial.println("Failed to initialise EEPROM");
|
||||
Serial.println("Restarting...");
|
||||
delay(1000);
|
||||
ESP.restart();
|
||||
}
|
||||
|
||||
//命令设置
|
||||
comm.add("TA",do_TA);
|
||||
comm.add("START",do_START);
|
||||
comm.add("MOTOR",do_MOTOR);
|
||||
comm.add("SW",do_SW);
|
||||
comm.add("SV",do_SV);
|
||||
comm.add("SA",do_SA);
|
||||
target_angle = EEPROM.readFloat(0);
|
||||
swing_up_voltage = EEPROM.readFloat(4);
|
||||
swing_up_angle = EEPROM.readFloat(8);
|
||||
#if FLAG_V
|
||||
comm.add("K11",do_K11);
|
||||
comm.add("K12",do_K12);
|
||||
|
@ -131,6 +151,11 @@ void setup() {
|
|||
comm.add("K31",do_K31);
|
||||
comm.add("K32",do_K32);
|
||||
comm.add("K33",do_K33);
|
||||
comm.add("K41",do_K41);
|
||||
comm.add("K42",do_K42);
|
||||
comm.add("K43",do_K43);
|
||||
motor.PID_velocity.P = EEPROM.readFloat(12);
|
||||
motor.PID_velocity.I = EEPROM.readFloat(16);
|
||||
#endif
|
||||
// kalman mpu6050 init
|
||||
Wire.begin(19, 18,400000);// Set I2C frequency to 400kHz
|
||||
|
@ -200,7 +225,7 @@ void setup() {
|
|||
motor.controller = MotionControlType::velocity;
|
||||
//速度PI环设置
|
||||
motor.PID_velocity.P = 0.5;
|
||||
motor.PID_velocity.I = 10;
|
||||
motor.PID_velocity.I = 20;
|
||||
#endif
|
||||
|
||||
|
||||
|
@ -258,18 +283,18 @@ void loop() {
|
|||
gyroZangle = kalAngleZ;
|
||||
|
||||
float pendulum_angle = constrainAngle(fmod(kalAngleZ,120)-target_angle);
|
||||
// float pendulum_angle = constrainAngle((fmod(kalAngleZ * 3, 360.0) / 3.0 - target_angle) / 57.29578);
|
||||
#if FLAG_V
|
||||
if (abs(pendulum_angle) < 12) // if angle small enough stabilize 0.5~30°,1.5~90°
|
||||
// FLAG_V为1时使用电压控制,为0时候速度控制
|
||||
#if FLAG_V
|
||||
if (abs(pendulum_angle) < swing_up_angle) // if angle small enough stabilize 0.5~30°,1.5~90°
|
||||
{
|
||||
target_voltage = controllerLQR(angle_pid(pendulum_angle), gyroZrate, motor.shaftVelocity());
|
||||
target_voltage = controllerLQR(pendulum_angle, gyroZrate, motor.shaftVelocity());
|
||||
// limit the voltage set to the motor
|
||||
if (abs(target_voltage) > motor.voltage_limit * 0.7)
|
||||
target_voltage = _sign(target_voltage) * motor.voltage_limit * 0.7;
|
||||
}
|
||||
else // else do swing-up
|
||||
{ // sets 1.5V to the motor in order to swing up
|
||||
target_voltage = -_sign(gyroZrate) * 1.5;
|
||||
target_voltage = -_sign(gyroZrate) * swing_up_voltage;
|
||||
}
|
||||
|
||||
// set the target voltage to the motor
|
||||
|
@ -283,9 +308,9 @@ void loop() {
|
|||
}
|
||||
|
||||
#else
|
||||
if (abs(pendulum_angle) < 18) // if angle small enough stabilize 0.5~30°,1.5~90°
|
||||
if (abs(pendulum_angle) < swing_up_angle) // if angle small enough stabilize 0.5~30°,1.5~90°
|
||||
{
|
||||
target_velocity = LQR_K3_1*pendulum_angle+LQR_K3_2*gyroZrate+LQR_K3_3*motor.shaftVelocity();
|
||||
target_velocity = controllerLQR(pendulum_angle, gyroZrate, motor.shaftVelocity());
|
||||
if (abs(target_velocity) > 140)
|
||||
target_velocity = _sign(target_velocity) * 140;
|
||||
motor.controller = MotionControlType::velocity;
|
||||
|
@ -348,7 +373,7 @@ double acc2rotation(double x, double y)
|
|||
}
|
||||
}
|
||||
|
||||
// function constraining the angle in between -pi and pi, in degrees -180 and 180
|
||||
// function constraining the angle in between -60~60
|
||||
float constrainAngle(float x)
|
||||
{
|
||||
float a = 0;
|
||||
|
@ -370,7 +395,7 @@ float controllerLQR(float p_angle, float p_vel, float m_vel)
|
|||
// - k = [40, 7, 0.3]
|
||||
// - k = [13.3, 21, 0.3]
|
||||
// - x = [pendulum angle, pendulum velocity, motor velocity]'
|
||||
if (abs(p_angle) > 1.5)
|
||||
if (abs(p_angle) > 2.5)
|
||||
{
|
||||
last_unstable_time = millis();
|
||||
stable = 0;
|
||||
|
@ -382,6 +407,7 @@ float controllerLQR(float p_angle, float p_vel, float m_vel)
|
|||
|
||||
//Serial.println(stable);
|
||||
float u;
|
||||
#if FLAG_V
|
||||
if (!stable)
|
||||
{
|
||||
u = LQR_K1_1 * p_angle + LQR_K1_2 * p_vel + LQR_K1_3 * m_vel;
|
||||
|
@ -391,8 +417,17 @@ float controllerLQR(float p_angle, float p_vel, float m_vel)
|
|||
//u = LQR_K1 * p_angle + LQR_K2 * p_vel + LQR_K3 * m_vel;
|
||||
u = LQR_K2_1 * p_angle + LQR_K2_2 * p_vel + LQR_K2_3 * m_vel;
|
||||
}
|
||||
|
||||
|
||||
#else
|
||||
if (!stable)
|
||||
{
|
||||
u = LQR_K3_1 * p_angle + LQR_K3_2 * p_vel + LQR_K3_3 * m_vel;
|
||||
}
|
||||
else
|
||||
{
|
||||
//u = LQR_K1 * p_angle + LQR_K2 * p_vel + LQR_K3 * m_vel;
|
||||
u = LQR_K4_1 * p_angle + LQR_K4_2 * p_vel + LQR_K4_3 * m_vel;
|
||||
}
|
||||
#endif
|
||||
return u;
|
||||
}
|
||||
void wifi_print(char * s,double num)
|
||||
|
|
|
@ -8,4 +8,7 @@
|
|||
解决:sprintf(s, "%d", 100//将100转为10进制表示的字符串
|
||||
|
||||
问题4:强制类型转换(const unsigned char*)不能直接使用print输出
|
||||
解决:atoi((char*)(packet.data())) //使用(char*) 进行强制类型转换
|
||||
解决:atoi((char*)(packet.data())) //使用(char*) 进行强制类型转换
|
||||
|
||||
问题5: udp发送数据时会出现乱码
|
||||
解决:字符数组末尾需要添加'\0'作为结束符
|
428
main.cpp
428
main.cpp
|
@ -1,428 +0,0 @@
|
|||
|
||||
#include <Arduino.h>
|
||||
#include <Wire.h>
|
||||
#include <Kalman.h> // Source: https://github.com/TKJElectronics/KalmanFilter
|
||||
#define gyroZ_OFF -0.22
|
||||
|
||||
//#define stable_angle 178.2
|
||||
//#define stable_angle 58.8
|
||||
|
||||
//#define stable_angle 301.75
|
||||
#define stable_angle 60.0
|
||||
Kalman kalmanZ;
|
||||
|
||||
/* IMU Data */
|
||||
double accX, accY, accZ;
|
||||
double gyroX, gyroY, gyroZ;
|
||||
int16_t tempRaw;
|
||||
|
||||
double gyroZangle; // Angle calculate using the gyro only
|
||||
double compAngleZ; // Calculated angle using a complementary filter
|
||||
double kalAngleZ; // Calculated angle using a Kalman filter
|
||||
|
||||
uint32_t timer;
|
||||
uint8_t i2cData[14]; // Buffer for I2C data
|
||||
|
||||
/********************************************************************************/
|
||||
#include <SimpleFOC.h>
|
||||
//#include "common/foc_utils.h"
|
||||
#define swing_up_voltage 1.5 //V
|
||||
#define balance_voltage 10 //V
|
||||
#define min_voltage 9.5 //V
|
||||
/*
|
||||
#define PID_P 0 //
|
||||
#define PID_I 0 //
|
||||
#define PID_D 1 //
|
||||
#define LQR_K1 1 //
|
||||
#define LQR_K2 0 //
|
||||
#define LQR_K3 0.0 //
|
||||
*/
|
||||
float PID_P = 1; //
|
||||
float PID_I = 0; //
|
||||
float PID_D = 0; //
|
||||
/*
|
||||
//稳定器参数
|
||||
float LQR_K1 = 50; //摇摆到平衡
|
||||
float LQR_K2 = 2; //
|
||||
float LQR_K3 = 0.30; //
|
||||
|
||||
float LQR_K1_1 = 50; //平衡态
|
||||
float LQR_K2_1 = 2; //
|
||||
float LQR_K3_1 = 0.15; //
|
||||
*/
|
||||
//倒立摆参数
|
||||
float LQR_K1 = 200; //摇摆到平衡
|
||||
float LQR_K2 = 40; //
|
||||
float LQR_K3 = 0.30; //
|
||||
|
||||
float LQR_K1_1 = 200; //平衡态
|
||||
float LQR_K2_1 = 15; //
|
||||
float LQR_K3_1 = 0.15; //
|
||||
|
||||
/*
|
||||
float LQR_K1 = 200; //
|
||||
float LQR_K2 = 40; //
|
||||
float LQR_K3 = 0.30; //
|
||||
*/
|
||||
/*单角度稳定
|
||||
|
||||
float LQR_K1 = 80; //平衡完成
|
||||
float LQR_K2 = 15; //
|
||||
float LQR_K3 = 0.15; //
|
||||
*/
|
||||
float OFFSET = 0;
|
||||
bool stable = 0, battery_low = 0;
|
||||
uint32_t last_unstable_time;
|
||||
//output=LQR_K1*PID+LQR_K2*p_vel + LQR_K3 * m_vel
|
||||
|
||||
MagneticSensorI2C sensor = MagneticSensorI2C(AS5600_I2C);
|
||||
PIDController angle_pid = PIDController(PID_P, PID_I, PID_D, balance_voltage * 0.7, 20000);
|
||||
LowPassFilter lpf_throttle{0.00};
|
||||
// BLDC motor init
|
||||
BLDCMotor motor = BLDCMotor(5);
|
||||
// driver instance
|
||||
BLDCDriver3PWM driver = BLDCDriver3PWM(9, 10, 11, 8, 3);
|
||||
double rotationshift(double origin, double theta, double shift, bool y);
|
||||
double acc2rotation(double x, double y);
|
||||
float controllerLQR(float p_angle, float p_vel, float m_vel);
|
||||
float constrainAngle(float x);
|
||||
|
||||
// instantiate the commander
|
||||
Commander command = Commander(Serial);
|
||||
//void onp(char *cmd) { command.scalar(&PID_P, cmd); }
|
||||
//void oni(char *cmd) { command.scalar(&PID_I, cmd); }
|
||||
//void ond(char *cmd) { command.scalar(&PID_D, cmd); }
|
||||
void onj(char *cmd) { command.scalar(&LQR_K1, cmd); }
|
||||
void onk(char *cmd) { command.scalar(&LQR_K2, cmd); }
|
||||
void onl(char *cmd) { command.scalar(&LQR_K3, cmd); }
|
||||
|
||||
/********************************************************************************/
|
||||
void setup()
|
||||
{
|
||||
Serial.begin(115200);
|
||||
Wire.begin();
|
||||
|
||||
Wire.setClock(400000UL); // Set I2C frequency to 400kHz
|
||||
Serial.println(((analogRead(A3) / 41.5)));
|
||||
i2cData[0] = 7; // Set the sample rate to 1000Hz - 8kHz/(7+1) = 1000Hz
|
||||
i2cData[1] = 0x00; // Disable FSYNC and set 260 Hz Acc filtering, 256 Hz Gyro filtering, 8 KHz sampling
|
||||
i2cData[2] = 0x00; // Set Gyro Full Scale Range to ±250deg/s
|
||||
i2cData[3] = 0x00; // Set Accelerometer Full Scale Range to ±2g
|
||||
while (i2cWrite(0x19, i2cData, 4, false))
|
||||
; // Write to all four registers at once
|
||||
while (i2cWrite(0x6B, 0x01, true))
|
||||
; // PLL with X axis gyroscope reference and disable sleep mode
|
||||
|
||||
while (i2cRead(0x75, i2cData, 1))
|
||||
;
|
||||
if (i2cData[0] != 0x68)
|
||||
{ // Read "WHO_AM_I" register
|
||||
Serial.print(F("Error reading sensor"));
|
||||
while (1)
|
||||
;
|
||||
}
|
||||
|
||||
delay(100); // Wait for sensor to stabilize
|
||||
|
||||
/* Set kalman and gyro starting angle */
|
||||
while (i2cRead(0x3B, i2cData, 6))
|
||||
;
|
||||
accX = (int16_t)((i2cData[0] << 8) | i2cData[1]);
|
||||
accY = (int16_t)((i2cData[2] << 8) | i2cData[3]);
|
||||
accZ = (int16_t)((i2cData[4] << 8) | i2cData[5]);
|
||||
|
||||
// Source: http://www.freescale.com/files/sensors/doc/app_note/AN3461.pdf eq. 25 and eq. 26
|
||||
// atan2 outputs the value of -π to π (radians) - see http://en.wikipedia.org/wiki/Atan2
|
||||
// It is then converted from radians to degrees
|
||||
// Eq. 25 and 26
|
||||
|
||||
double pitch = acc2rotation(accX, accY);
|
||||
|
||||
kalmanZ.setAngle(pitch);
|
||||
gyroZangle = pitch;
|
||||
|
||||
timer = micros();
|
||||
|
||||
pinMode(4, OUTPUT);
|
||||
digitalWrite(4, 1);
|
||||
sensor.init(&Wire);
|
||||
motor.linkSensor(&sensor);
|
||||
// driver
|
||||
driver.voltage_power_supply = 12;
|
||||
driver.init();
|
||||
|
||||
// link the driver and the motor
|
||||
motor.linkDriver(&driver);
|
||||
|
||||
// aligning voltage
|
||||
motor.voltage_sensor_align = 3;
|
||||
|
||||
// choose FOC modulation (optional)
|
||||
//motor.foc_modulation = FOCModulationType::SinePWM;
|
||||
motor.foc_modulation = FOCModulationType::SpaceVectorPWM;
|
||||
|
||||
// set control loop type to be used
|
||||
motor.controller = MotionControlType::torque;
|
||||
//motor.controller = TorqueControlType::voltage;
|
||||
|
||||
motor.voltage_limit = balance_voltage;
|
||||
|
||||
motor.useMonitoring(Serial);
|
||||
// initialize motor
|
||||
motor.init();
|
||||
// align encoder and start FOC
|
||||
//motor.initFOC(4.5,Direction::CW);
|
||||
//motor.initFOC(4.05, Direction::CCW);
|
||||
motor.initFOC();
|
||||
//motor.initFOC(2.6492,Direction::CW);
|
||||
//command.add('p', onp, "p");
|
||||
//command.add('i', oni, "i");
|
||||
//command.add('d', ond, "d");
|
||||
command.add('j', onj, "newj:");
|
||||
command.add('k', onk, "newk:");
|
||||
command.add('l', onl, "newl:");
|
||||
|
||||
digitalWrite(4, 0);
|
||||
}
|
||||
long loop_count = 0;
|
||||
float target_voltage;
|
||||
void loop()
|
||||
{
|
||||
|
||||
motor.loopFOC();
|
||||
|
||||
if (loop_count++ == 10)
|
||||
{
|
||||
/* Update all the values */
|
||||
while (i2cRead(0x3B, i2cData, 14))
|
||||
;
|
||||
accX = (int16_t)((i2cData[0] << 8) | i2cData[1]);
|
||||
accY = (int16_t)((i2cData[2] << 8) | i2cData[3]);
|
||||
accZ = (int16_t)((i2cData[4] << 8) | i2cData[5]);
|
||||
tempRaw = (int16_t)((i2cData[6] << 8) | i2cData[7]);
|
||||
gyroX = (int16_t)((i2cData[8] << 8) | i2cData[9]);
|
||||
gyroY = (int16_t)((i2cData[10] << 8) | i2cData[11]);
|
||||
gyroZ = (int16_t)((i2cData[12] << 8) | i2cData[13]);
|
||||
;
|
||||
|
||||
double dt = (double)(micros() - timer) / 1000000; // Calculate delta time
|
||||
timer = micros();
|
||||
|
||||
// Source: http://www.freescale.com/files/sensors/doc/app_note/AN3461.pdf eq. 25 and eq. 26
|
||||
// atan2 outputs the value of -π to π (radians) - see http://en.wikipedia.org/wiki/Atan2
|
||||
// It is then converted from radians to degrees
|
||||
// Eq. 25 and 26
|
||||
|
||||
double pitch = acc2rotation(accX, accY);
|
||||
double gyroZrate = gyroZ / 131.0; // Convert to deg/s
|
||||
|
||||
kalAngleZ = kalmanZ.getAngle(pitch, gyroZrate + gyroZ_OFF, dt);
|
||||
|
||||
gyroZangle += (gyroZrate + gyroZ_OFF) * dt;
|
||||
//gyroXangle += kalmanX.getRate() * dt; // Calculate gyro angle using the unbiased rate
|
||||
//gyroYangle += kalmanY.getRate() * dt;
|
||||
|
||||
compAngleZ = 0.93 * (compAngleZ + (gyroZrate + gyroZ_OFF) * dt) + 0.07 * pitch;
|
||||
|
||||
// Reset the gyro angle when it has drifted too much
|
||||
if (gyroZangle < -180 || gyroZangle > 180)
|
||||
gyroZangle = kalAngleZ;
|
||||
|
||||
/* Print Data */
|
||||
#if 0 // Set to 1 to activate
|
||||
Serial.print(accX); Serial.print("\t");
|
||||
Serial.print(accY); Serial.print("\t");
|
||||
Serial.print(accZ); Serial.print("\t");
|
||||
|
||||
Serial.print(gyroX); Serial.print("\t");
|
||||
Serial.print(gyroY); Serial.print("\t");
|
||||
Serial.print(gyroZ); Serial.print("\t");
|
||||
|
||||
Serial.print("\t");
|
||||
#endif
|
||||
#if 0
|
||||
Serial.print(pitch);
|
||||
Serial.print("\t");
|
||||
Serial.print(gyroZangle);
|
||||
Serial.print("\t");
|
||||
Serial.print(compAngleZ);
|
||||
Serial.print("\t");
|
||||
Serial.print(kalAngleZ);
|
||||
Serial.print("\t");
|
||||
|
||||
//Serial.print("\r\n");
|
||||
#endif
|
||||
// calculate the pendulum angle
|
||||
//LQR_K1 = analogRead(A3) / 10.0;
|
||||
digitalWrite(3, 1);
|
||||
//float pendulum_angle = constrainAngle(rotationshift(kalAngleZ * 3, 180.0, -180.0+OFFSET, 0.0) / 57.29578 + M_PI);
|
||||
//float pendulum_angle = constrainAngle((kalAngleZ - stable_angle ) / 57.29578);
|
||||
float pendulum_angle = constrainAngle((fmod(kalAngleZ * 3, 360.0) / 3.0 - stable_angle) / 57.29578);
|
||||
if (abs(pendulum_angle) < 0.6) // if angle small enough stabilize 0.5~30°,1.5~90°
|
||||
{
|
||||
//target_voltage = controllerLQR(pendulum_angle, g.gyro.z, motor.shaftVelocity());
|
||||
|
||||
target_voltage = controllerLQR(angle_pid(pendulum_angle), gyroZrate / 57.29578, motor.shaftVelocity());
|
||||
|
||||
//digitalWrite(4, 1);
|
||||
}
|
||||
else // else do swing-up
|
||||
{ // sets 1.5V to the motor in order to swing up
|
||||
target_voltage = -_sign(gyroZrate) * swing_up_voltage;
|
||||
digitalWrite(4, 0);
|
||||
}
|
||||
|
||||
// set the target voltage to the motor
|
||||
if (accZ < -13000 && ((accX * accX + accY * accY) > (14000 * 14000)))
|
||||
{
|
||||
motor.move(0);
|
||||
}
|
||||
else
|
||||
{
|
||||
motor.move(lpf_throttle(target_voltage));
|
||||
}
|
||||
command.run();
|
||||
// restart the counter
|
||||
loop_count = 0;
|
||||
//Serial.print("kangle:");
|
||||
driver.voltage_power_supply = analogRead(A3) / 41.5;
|
||||
//Serial.println(driver.voltage_power_supply);
|
||||
if ((analogRead(A3) / 41.5) < min_voltage && !battery_low)
|
||||
{
|
||||
battery_low = 1;
|
||||
Serial.println("battery_low!!");
|
||||
while (battery_low)
|
||||
{
|
||||
motor.loopFOC();
|
||||
motor.move(0);
|
||||
if (millis() % 500 < 250)
|
||||
digitalWrite(4, 1);
|
||||
else
|
||||
digitalWrite(4, 0);
|
||||
}
|
||||
}
|
||||
//Serial.print(",fangle:");
|
||||
//Serial.print(constrainAngle(rotationshift(kalAngleZ * 3, 180.0, -180.0+OFFSET, 0.0) / 57.29578 + M_PI));
|
||||
|
||||
//Serial.println(fmod(kalAngleZ * 3, 360.0) / 3.0);
|
||||
//Serial.print(",pid:");
|
||||
//Serial.println(accX);
|
||||
//Serial.print(angle_pid(pendulum_angle));
|
||||
//Serial.print(",voltage:");
|
||||
//Serial.print(target_voltage);
|
||||
//Serial.print(",lpf_throttle:");
|
||||
//Serial.println(lpf_throttle(target_voltage));
|
||||
//Serial.print(",E_gle:");
|
||||
//Serial.print(sensor.getAngle());
|
||||
//Serial.print(",vel:");
|
||||
//Serial.println(sensor.getVelocity());
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
}
|
||||
|
||||
// function constraining the angle in between -pi and pi, in degrees -180 and 180
|
||||
float constrainAngle(float x)
|
||||
{
|
||||
x = fmod(x + M_PI, _2PI);
|
||||
if (x < 0)
|
||||
x += _2PI;
|
||||
return x - M_PI;
|
||||
}
|
||||
// LQR stabilization controller functions
|
||||
// calculating the voltage that needs to be set to the motor in order to stabilize the pendulum
|
||||
float controllerLQR(float p_angle, float p_vel, float m_vel)
|
||||
{
|
||||
// if angle controllable
|
||||
// calculate the control law
|
||||
// LQR controller u = k*x
|
||||
// - k = [40, 7, 0.3]
|
||||
// - k = [13.3, 21, 0.3]
|
||||
// - x = [pendulum angle, pendulum velocity, motor velocity]'
|
||||
if (abs(p_angle) > 0.05)
|
||||
{
|
||||
last_unstable_time = millis();
|
||||
stable = 0;
|
||||
digitalWrite(4, 0);
|
||||
}
|
||||
if ((millis() - last_unstable_time) > 1000)
|
||||
{
|
||||
stable = 1;
|
||||
digitalWrite(4, 1);
|
||||
}
|
||||
|
||||
//Serial.println(stable);
|
||||
float u;
|
||||
if (!stable)
|
||||
{
|
||||
u = LQR_K1 * p_angle + LQR_K2 * p_vel + LQR_K3 * m_vel;
|
||||
}
|
||||
else
|
||||
{
|
||||
//u = LQR_K1 * p_angle + LQR_K2 * p_vel + LQR_K3 * m_vel;
|
||||
u = LQR_K1_1 * p_angle + LQR_K2_1 * p_vel + LQR_K3_1 * m_vel;
|
||||
}
|
||||
|
||||
// limit the voltage set to the motor
|
||||
if (abs(u) > motor.voltage_limit * 0.7)
|
||||
u = _sign(u) * motor.voltage_limit * 0.7;
|
||||
|
||||
return u;
|
||||
}
|
||||
/* mpu6050加速度转换为角度
|
||||
acc2rotation(ax, ay)
|
||||
acc2rotation(az, ay) */
|
||||
double acc2rotation(double x, double y)
|
||||
{
|
||||
if (y < 0)
|
||||
{
|
||||
return atan(x / y) / 1.570796 * 90 + 180;
|
||||
}
|
||||
else if (x < 0)
|
||||
{
|
||||
return (atan(x / y) / 1.570796 * 90 + 360);
|
||||
}
|
||||
else
|
||||
{
|
||||
return (atan(x / y) / 1.570796 * 90);
|
||||
}
|
||||
}
|
||||
|
||||
/* mpu6050加速度转换为角度
|
||||
rotationshift(original angle,+θ,shiftθ,0 is normal,1 is reverse)
|
||||
rotationshift(0,30)=30
|
||||
rotationshift(20,30)=50
|
||||
rotationshift(0,30,1)=330
|
||||
rotationshift(20,30,1)=310
|
||||
rotationshift(0,0,-180,0)=-180
|
||||
*/
|
||||
double rotationshift(double origin, double theta, double shift = 0, bool y = false)
|
||||
{
|
||||
static float origin_old;
|
||||
if (abs(origin - origin_old) > 0.1)
|
||||
origin_old += _sign(origin - origin_old) * 0.01;
|
||||
else
|
||||
origin_old = origin;
|
||||
|
||||
if (y == 0)
|
||||
{
|
||||
if (origin + theta > 360)
|
||||
return origin + theta - 360 + shift;
|
||||
else
|
||||
{
|
||||
return origin + theta + shift;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
|
||||
if (-(origin + theta) + 360 < 0)
|
||||
return -(origin + theta) + 360 + 360 + shift;
|
||||
else
|
||||
{
|
||||
return -(origin + theta) + 360 + shift;
|
||||
}
|
||||
}
|
||||
}
|
|
@ -118,6 +118,7 @@ class MyWindow(QMainWindow, Ui_MainWindow):
|
|||
recv_data = recv_data[:-1]
|
||||
recv_data = recv_data.split(',')
|
||||
"""处理接受的信息"""
|
||||
# recv_data = [40,50,60]
|
||||
for i, data in enumerate(recv_data):
|
||||
self.re_item.append(''.join(re.split(r'[^A-Za-z]', data)))
|
||||
print(self.re_item)
|
||||
|
|
9328
莱洛三角切割/triangle.dxf
9328
莱洛三角切割/triangle.dxf
File diff suppressed because it is too large
Load Diff
Binary file not shown.
9628
莱洛三角切割/wheel.dxf
9628
莱洛三角切割/wheel.dxf
File diff suppressed because it is too large
Load Diff
BIN
莱洛三角切割/wheel.lcp
BIN
莱洛三角切割/wheel.lcp
Binary file not shown.
Loading…
Reference in New Issue