+
+
+ You signed in with another tab or window. Reload to refresh your session.
+ You signed out in another tab or window. Reload to refresh your session.
+ You switched accounts on another tab or window. Reload to refresh your session.
+
+
+
+
+
+
+
+ You can’t perform that action at this time.
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/beamsteer.py b/beamsteer.py
new file mode 100644
index 0000000..21955a6
--- /dev/null
+++ b/beamsteer.py
@@ -0,0 +1,248 @@
+#!/usr/bin/env python3
+# Must use Python 3
+# Copyright (C) 2022 Analog Devices, Inc.
+#
+# All rights reserved.
+#
+# Redistribution and use in source and binary forms, with or without modification,
+# are permitted provided that the following conditions are met:
+# - Redistributions of source code must retain the above copyright
+# notice, this list of conditions and the following disclaimer.
+# - Redistributions in binary form must reproduce the above copyright
+# notice, this list of conditions and the following disclaimer in
+# the documentation and/or other materials provided with the
+# distribution.
+# - Neither the name of Analog Devices, Inc. nor the names of its
+# contributors may be used to endorse or promote products derived
+# from this software without specific prior written permission.
+# - The use of this software may or may not infringe the patent rights
+# of one or more patent holders. This license does not release you
+# from the requirement that you obtain separate licenses from these
+# patent holders to use this software.
+# - Use of the software either in source or binary form, must be run
+# on or directly connected to an Analog Devices Inc. component.
+#
+# THIS SOFTWARE IS PROVIDED BY ANALOG DEVICES "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
+# INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A
+# PARTICULAR PURPOSE ARE DISCLAIMED.
+#
+# IN NO EVENT SHALL ANALOG DEVICES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, INTELLECTUAL PROPERTY
+# RIGHTS, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
+# BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
+# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
+# THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+''' Simple Beamforming Example Using Phaser and Python'''
+
+# =============================================================================
+# Import statements
+# =============================================================================
+import adi
+import ADAR_pyadi_functions as ADAR # import the ADAR1000 functions
+import SDR_functions as SDR # import the Pluto SDR functions
+
+import sys
+import pickle
+import matplotlib.pyplot as plt
+import numpy as np
+
+
+
+# =============================================================================
+# User parameters
+# =============================================================================
+
+rpi_ip = "ip:phaser.local" # default IP address of Phaser's Raspberry Pi
+sdr_ip = "ip:192.168.2.1" # default Pluto IP address
+
+# select which signal source to use
+# HB100 (external source)
+# OUT1 (transmit freq is set in config.py)
+# OUT2 (transmit freq is set in config.py)
+SignalSource = 'HB100' # 'HB100', 'OUT1', or 'OUT2'
+
+# config.py has all the key parameters that you might want to modify
+try:
+ import config as config
+except:
+ print("Make sure config.py is in this directory")
+ sys.exit(0)
+
+
+# =============================================================================
+# Variables setup
+# =============================================================================
+
+# if using HB100, load the signal frequency from "phaser_find_hb100.py" output file
+if SignalSource == 'HB100':
+ try:
+ with open("hb100_freq_val.pkl", "rb") as file1:
+ config.SignalFreq = pickle.load(file1)
+ print("Found signal freq file, ", config.SignalFreq/1e9, " GHz")
+ except:
+ print("No signal freq found, keeping at ", config.SignalFreq/1e9, " GHz")
+
+"""SET DEFAULT VALUES"""
+sdr_address = sdr_ip
+SignalFreq = config.SignalFreq
+Tx_freq = config.Tx_freq # Pluto's Tx LO freq.
+Rx_freq = config.Rx_freq # Pluto's Rx LO freq
+LO_freq = SignalFreq + Rx_freq # freq of the LTC5548 mixer LO
+SampleRate = config.SampleRate
+Rx_gain = config.Rx_gain
+Tx_gain = config.Tx_gain
+RxGain1 = 100
+RxGain2 = 100
+RxGain3 = 100
+RxGain4 = 100
+RxGain5 = 100
+RxGain6 = 100
+RxGain7 = 100
+RxGain8 = 100
+RxPhase1 = config.Rx1_cal
+RxPhase2 = config.Rx2_cal
+RxPhase3 = config.Rx3_cal
+RxPhase4 = config.Rx4_cal
+RxPhase5 = config.Rx5_cal
+RxPhase6 = config.Rx6_cal
+RxPhase7 = config.Rx7_cal
+RxPhase8 = config.Rx8_cal
+phase_step_size = 2.8125
+c = 299792458 # speed of light in m/s
+d = config.d # antenna spacing for phaser is 14mm
+gainList = [RxGain1, RxGain2, RxGain3, RxGain4,
+ RxGain5, RxGain6, RxGain7, RxGain8]
+phaseList = [RxPhase1, RxPhase2, RxPhase3, RxPhase4,
+ RxPhase5, RxPhase6, RxPhase7, RxPhase8]
+
+
+# =============================================================================
+# Hardware setup
+# =============================================================================
+
+# Use the onboard VCO to generate the LO? Or apply source to EXT_LO?
+gpios = adi.one_bit_adc_dac(rpi_ip)
+gpios.gpio_vctrl_1 = 1 # 1=Use onboard PLL/LO source (0=use external LO input)
+gpios.gpio_vctrl_2 = 1 # 1=Send LO to transmit circuitry (0=disable Tx path and send LO to LO_OUT)
+
+# setup GPIOs to control if Tx is output on OUT1 or OUT2
+gpios.gpio_div_mr = 1
+gpios.gpio_div_s0 = 0
+gpios.gpio_div_s1 = 0
+gpios.gpio_div_s2 = 0
+
+# Initialize Pluto
+sdr = SDR.SDR_init(
+ sdr_address,
+ SampleRate,
+ Tx_freq,
+ Rx_freq,
+ Rx_gain,
+ Tx_gain,
+ config.buffer_size,
+ )
+SDR.SDR_LO_init(rpi_ip, LO_freq) # Set Phaser's ADF4159 to the LO_freq
+
+# Intialize the ADAR1000 receive array
+rx_array = adi.adar1000_array(
+ uri=rpi_ip,
+ chip_ids=["BEAM0", "BEAM1"], # these are the ADAR1000s' labels in the device tree
+ device_map=[[1], [2]],
+ element_map=[[1, 2, 3, 4, 5, 6, 7, 8]],
+ device_element_map={
+ 1: [7, 8, 5, 6], # i.e. channel2 of device1 (BEAM0), maps to element 8
+ 2: [3, 4, 1, 2],
+ },
+ )
+for device in rx_array.devices.values():
+ ADAR.ADAR_init(device) # resets the ADAR1000
+ ADAR.ADAR_set_mode(device, "rx") # ADAR1000s on Phaser are receive only, so mode is always "rx"
+ADAR.ADAR_set_Taper(
+ rx_array,
+ gainList
+ )
+
+# Set transmitter to either OUT1 or OUT2 SMA port. Or disable if using HB100
+if SignalSource == 'OUT1': # use Phaser's OUT1 SMA port as the transmitter
+ gpios.gpio_tx_sw = 1 # 0=OUT2, 1=OUT1
+ gpios.gpio_vctrl_2 = 1 # 1=Send LO to transmit circuitry
+elif SignalSource == 'OUT2': # use OUT2 as the transmitter
+ gpios.gpio_tx_sw = 0 # 0=OUT2, 1=OUT1
+ gpios.gpio_vctrl_2 = 1 # 1=Send LO to transmit circuitry
+else: # use HB100 as the transmit signal source
+ gpios.gpio_tx_sw = 0
+ SDR.SDR_setTx(sdr, -80) # disable tx output by attenuating it
+
+
+# =============================================================================
+# Define Common Functions
+# =============================================================================
+def ConvertPhaseToSteerAngle(PhDelta):
+ # steering angle theta = arcsin(c*deltaphase/(2*pi*f*d)
+ value1 = (c * np.radians(np.abs(PhDelta))) / (
+ 2 * 3.14159 * (SignalFreq) * d)
+ clamped_value1 = max(min(1, value1), -1) # arcsin argument must be between 1 and -1
+ theta = np.degrees(np.arcsin(clamped_value1))
+ if PhDelta >= 0:
+ SteerAngle = theta # positive PhaseDelta covers 0deg to 90 deg
+ else:
+ SteerAngle = -theta # negative phase delta covers 0 deg to -90 deg
+ return SteerAngle
+
+def dbfs(raw_data):
+ # function to convert IQ samples to FFT plot, scaled in dBFS
+ NumSamples = len(raw_data)
+ win = np.hamming(NumSamples)
+ y = raw_data * win
+ s_fft = np.fft.fft(y) / np.sum(win)
+ s_shift = np.fft.fftshift(s_fft)
+ s_dbfs = 20*np.log10(np.abs(s_shift)/(2**11)) # Pluto is a signed 12 bit ADC, so use 2^11 to convert to dBFS
+ return s_dbfs
+
+
+# =============================================================================================
+# Loop through all the steering angles and record the peak FFT amplitude at each steering angle
+# =============================================================================================
+angles = [] # stores the list of steering angles
+peak_gains = [] # stores the peak FFT gain received for each steering angle
+
+steering_step = 1 # steering angle step size (in degrees)
+SteerValues = np.arange(-90, 90 + steering_step, steering_step)
+# Phase delta = 2*Pi*d*sin(theta)/lambda = 2*Pi*d*sin(theta)*f/c
+PhaseValues = np.degrees(
+ 2*np.pi*d* np.sin(np.radians(SteerValues))
+ * SignalFreq / c
+)
+
+for PhDelta in PhaseValues:
+ ADAR.ADAR_set_Phase(
+ rx_array,
+ PhDelta,
+ phase_step_size,
+ phaseList
+ )
+
+ data = sdr.rx()
+ data_sum = data[0]+data[1]
+ sum_dbfs = dbfs(data_sum)
+ peak_dbfs = max(sum_dbfs)
+ angles.append(ConvertPhaseToSteerAngle(PhDelta))
+ peak_gains.append(peak_dbfs)
+
+
+# =============================================================================
+# Plotting results
+# =============================================================================
+
+plt.figure(1)
+plt.subplot(2, 1, 1)
+plt.title("Beam sweep plot")
+plt.plot(angles, peak_gains, marker="o", ms=2)
+plt.xlabel("Steering angle (deg)")
+plt.ylabel("Peak Amplitude (dBFS)")
+plt.tight_layout()
+plt.show()
+
+
+